Critical Thinking Academy

What is Critical thinking? 

There are many definitions of Critical thinking. Some of them very long and comprehensive in coverage of everything critical thinking includes, while others are short definitions but  very succintly summarize what Critical thinking is and what leads to becoming a critical thinker. Here are three of them.

1. "Critical thinking is the process of making clear reasoned judgments" ...Beyer, 1995

2. “Critical thinking is the ability to look at a situation and clearly understand it from multiple perspectives while separating facts from opinions, myths, prejudices, hunches (intuition) and assumptions”….. Pearsons

3. "It involves the ability to questions assumptions etc. in order to make logical decisions based on consideration of the options and evaluation of all facts". … Pearsons

What do you need to learn to become a critical thinker? 

All of us know critical thinking by its absence or critical thinking traits that we see in a person. When someone makes a foolish decision or applies the first solution that comes to their mind in problem-solving, we know that critical thinking has not been exercised. But critical thinking itself has not been defined for  most of us -either in our education or later in the workplace.

Maybe we see Critical thinking as applied common sense. Critical thinking may also be defined as the process of making clear reasoned judgments about any claim, issue, or solution to a problem. Some also define it as the process of determining whether a claim is true or false. There are more complex definitions such as Critical thinking is skilled and active participation and evaluation of observations and communications, information, and argumentation (Fisher and Scriven). 

None of the academic definitions manage to communicate what Critical thinking is, its elements, and how it could be useful in the workplace, education, or life. To better understand what Critical thinking is, it is useful to look at the actual elements that go into Critical thinking, and see how they apply in various situations at work and in life.

Critical thinking is the process of making clear reasoned judgements. 

Elements of critical thinking

There are three elements that aid in critical thinking, and another three that obstruct critical thinking.

Logical reasoning: You would not expect an accountant to draw up a balance sheet without the knowledge of the debit/credit system. However, we are expected to be absolutely logical in our reasoning about problems and decision making. The absence of a formal introduction to logical reasoning results in even the most intelligent people miss a few steps in their reasoning. There are three main types of reasoning: Deductive reasoning, Inductive reasoning, and Causal reasoning. Of these, Inductive reasoning and Causal reasoning as the most commonly applied systems of logic in the workplace, education, and our daily life.

Clear thinking and communication: Discussions often end up at cross-purposes and pointless due to a lack of clear communication, and this lack of clarity is often due to a lack of definition of terms, ambiguity, and deliberated or unintended use of vague language.

Credibility: We are often required to evaluate suppliers and people to decide whether to work with them or not. We also rely on the opinions of others to make a varying range of decisions for the business, in education and life. How do we know how much credibility we should attach to the advice we get from these people, or how do we determine whether a supplier will be dependable or not? There are some simple principles that we can use to help us in our process of making judgments about credibility.

Elements that obstruct 

  Rhetoric: In the context of Critical thinking, rhetoric is the use of language to evoke emotions in us and persuade us into belief or action. Words have the power to express, elicit images, and evoke emotions in us. They have tremendous persuasive power or what can be called rhetoric force or emotive force. When a leader calls on soldiers to sacrifice lives for the sake of their country, or when citizens are passionately asked to join a protest to protect freedom, these are appeals to our emotions and not our logical reasoning. Rhetorical language and devices can cloud our ability to reason logically.  

Cognitive biases: A cognitive bias is a systematic error in our thinking and judgment and can be due to a number of different reasons such as faulty memory or perception and processing errors of our brains. There could be a number of other reasons, and scientists are still researching the causes of these cognitive biases. A cognitive bias is different from Fallacies in the sense that these errors are based on our incorrect perception and processing of information by our brains, whereas fallacies are simple errors in reasoning. Knowledge of fallacies can help us avoid reasoning errors, but cognitive biases may arise even if we have knowledge of these biases. Often the only way to mitigate errors due to cognitive biases is to rely on data or seek third party opinions.

hidden traps of persuasion banner

Critical Thinking Academy is founded with an intention of disseminating Critical thinking skills to executives…

  • Campus Life
  • ...a student.
  • ...a veteran.
  • ...an alum.
  • ...a parent.
  • ...faculty or staff.
  • Class Schedule
  • Crisis Resources
  • People Finder
  • Change Password

UTC RAVE Alert

Basic elements of critical thinking.

What is Critical Thinking Cloud WCTL

A set of information and beliefs, generating and processing skills, and the habit of using those skills to guide behavior.

Critical Thinking Can Be Defined As...

Who Are Critical Thinkers Cloud WCTL

Critical thinkers:

Ask questions

Gather relevant information

Think through solutions and conclusions 

Consider alternative systems of thought

Communicate effectively

They’re willing to admit when they’re wrong or when they don’t know the answer, rather than digging into a gut reaction or emotional point of view.

7 Habits of Critical Thinkers

Truth-seeking.

Ask questions and follow the evidence

Able to make judgements amid uncertainty

Inquisitive

Strive to be well-informed on a wide range of topics

Confident in Reasoning

Trustful of own skills to make good judgements

Organized and thoughtful problem solving

Identify potential consequences of decisions

Open-Minded

Tolerant of different views and sensitive to own biases

Important Critical Thinking Skills WCTL

While there is no official standard list of the skills that make up critical thinking, here is the list of core characteristics that we like best!

Interpretation

Recognizing a problem and describing it without bias​

Distinguishing the main idea from a text​

Constructing a tentative categorization or organization structure​

Clarifying the meaning of a sign, chart, or graph

Identifying similarities and differences between two approaches to a solution

Isolating the main claim made in an editorial or statement and tracing it back to the supporting reasons for that claim

Judging an author or speaker’s credibility​

Determining whether the evidence at hand supports the conclusion being drawn

Recognizing whether an argument’s conclusion follows with certainty or confidence from its premises

Identifying the implications of the position someone is advocating

Predicting what will happen next in a given situation

Developing a workable plan to gather information to resolve an uncertainty

Explanation

Constructing a chart or graph to organize your findings​

Stating research results and describing the required methods and criteria

Citing the evidence that led you to accept or reject another person’s position on an issue

Self-Regulation

Checking for understanding of an author or speaker without injecting your own views and ideas

Reminding yourself to separate personal opinions and assumptions from those of the author of a text

Reconsidering your interpretation in view of new analyses or facts or errors discovered in your work

Facione, P. A. (1998). Critical thinking: What it is and why it counts. Millbrae. California Academic Press. Haziran, 13, 2009. Retrieved from https://www.academia.edu/download/71022740/what_why98.pdf

Facione, P. A., Gittens, C. A., Facione, N. C. (2016). Cultivating a critical thinking mindset. Academia. Edu. Weekly Digest, 28. Retrieved from http://go.roguecc.edu/sites/go.roguecc.edu/files/users/MWeast/Cultivating+A+Positive+Critical+Thinking+Mindset_0.pdf

The Foundation for Critical Thinking. (2019). Defining critical thinking. Retrieved January 24, 2022, from https://www.criticalthinking.org/pages/defining-critical-thinking/766

Vaughn, L. (2015). The power of critical thinking: Effective reasoning about ordinary and extraordinary claims (5th ed.). New York: Oxford University Press.

Walker Center for Teaching and Learning

  • 433 Library
  • Dept 4354
  • 615 McCallie Ave
  •   423-425-4188
  • RMIT Australia
  • RMIT Europe
  • RMIT Vietnam
  • RMIT Global
  • RMIT Online
  • Alumni & Giving

RMIT University Library - Learning Lab

  • What will I do?
  • What will I need?
  • Who will help me?
  • About the institution
  • New to university?
  • Studying efficiently
  • Time management
  • Mind mapping
  • Note-taking
  • Reading skills
  • Argument analysis
  • Preparing for assessment
  • Critical thinking and argument analysis
  • Online learning skills
  • Starting my first assignment
  • Researching your assignment
  • What is referencing?
  • Understanding citations
  • When referencing isn't needed
  • Paraphrasing
  • Summarising
  • Synthesising
  • Integrating ideas with reporting words
  • Referencing with Easy Cite
  • Getting help with referencing
  • Acting with academic integrity
  • Artificial intelligence tools
  • Understanding your audience
  • Writing for coursework
  • Literature review
  • Academic style
  • Writing for the workplace
  • Spelling tips
  • Writing paragraphs
  • Writing sentences
  • Academic word lists
  • Annotated bibliographies
  • Artist statement
  • Case studies
  • Creating effective poster presentations
  • Essays, Reports, Reflective Writing
  • Law assessments
  • Oral presentations
  • Reflective writing
  • Art and design
  • Critical thinking
  • Maths and statistics
  • Sustainability
  • Educators' guide
  • Learning Lab content in context
  • Latest updates
  • Students Alumni & Giving Staff Library

Learning Lab

Getting started at uni, study skills, referencing.

  • When referencing isn't needed
  • Integrating ideas

Writing and assessments

  • Critical reading
  • Poster presentations
  • Postgraduate report writing

Subject areas

For educators.

  • Educators' guide
  • Elements of critical thinking

Identifying the topic

Identifying the topic is the first step in critical analysis of a text.

Topic refers to the word or sentence, which states the main subject of the work, i.e. the issue or idea with which the entire work is related. The work is the author's explanation of the topic. The topic is explicit, and often identified in the main title and should be evident in the abstract or opening paragraph. It answers the pivotal questions of who, what and why through data and facts.

Critical thinking processes:

The critical thinking process has three key elements.

  • evaluate and 
  • synthesise.
  • Identify the parts of an argument.
  • deconstruct, divide, determine, resolve, anatomise, cut up, break up, disintegrate, separate, lay bare, dissect, part

When you analyse you:

  • identify the main elements of a text, particularly the key ideas, the argument and the evidence
  • draw out inferences 
  • draw out implications 
  • identify persuasive tactics if used.

Examples of language that analyses

The first suggests that........... . The implication is that.......... although.......... .

The second component of the evidence provided is derived from...........and indicates a high level of....... .This could be seen as implying....... .

The third element is comprised of.......... . It supports Wright’s claim in that it........... .

Overall, the research demonstrates........... and.......... .However, it also suggests that........... .

  • gauge, appraise, assess, calculate, allocate value, decide, criticise, grade, size up, take measure

When you evaluate you:

  • identify the strengths and weaknesses in an argument (credibility)
  • weigh up the value of evidence (validity)
  • identify and evaluate the assumptions underlying the argument (integrity).

Examples of language that evaluates

The latter, a survey of.........strongly suggests that......... . This evidence is relevant in that it.........and credible in that it.......... .

However, the analysis of the narrative component of the research does not support her assertion that....... .

It suggests rather that........ which undermines her claim that.......... .

Furthermore, it is based on the assumption that.........which is not .........given the ........... .

  • to combine; to make whole.
  • amalgamate, incorporate, harmonise, blend, integrate, orchestrate, symphonise, unify, arrange, manufacture

When you synthesise you:

  • put information together in a new pattern
  • provide a new point of view
  • show how the relationship between the parts, and between the parts and the whole produce a unique communication.

Examples of language that synthesises

In contrast, Jones (2012), in highlighting...........provides insight into..........and demonstrates a high level of correlation between........and........ .

Jones’s (2012) analytic focus on..........facilitates a further contribution to.......by....... .

Overall, the research demonstrates that..........and.......... .

  • What is critical thinking?
  • Why think critically?
  • Becoming a critical thinker
  • Exercise - elements of critical thinking
  • Additional resources

Still can't find what you need?

The RMIT University Library provides study support , one-on-one consultations and peer mentoring to RMIT students.

  • Facebook (opens in a new window)
  • Twitter (opens in a new window)
  • Instagram (opens in a new window)
  • Linkedin (opens in a new window)
  • YouTube (opens in a new window)
  • Weibo (opens in a new window)
  • Copyright © 2024 RMIT University |
  • Accessibility |
  • Learning Lab feedback |
  • Complaints |
  • ABN 49 781 030 034 |
  • CRICOS provider number: 00122A |
  • RTO Code: 3046 |
  • Open Universities Australia

The Sourcebook for Teaching Science

  • Sourcebook Home

Science Teaching Series

  • The Sourcebook for Teaching Science
  • Hands-On Physics Activities
  • Hands-On Chemistry Activities

Internet Resources

I. developing scientific literacy.

  • 1 - Building a Scientific Vocabulary
  • 2 - Developing Science Reading Skills
  • 3 - Developing Science Writing Skills
  • 4 - Science, Technology & Society

II. Developing Scientific Reasoning

  • 5 - Employing Scientific Methods
  • 6 - Developing Scientific Reasoning
  • 7 - Thinking Critically & Misconceptions

III. Developing Scientific Understanding

  • 8 - Organizing Science Information
  • 9 - Graphic Oganizers for Science
  • 10 - Learning Science with Analogies
  • 11 - Improving Memory in Science
  • 12 - Structure and Function in Science
  • 13 - Games for Learning Science

IV. Developing Scientific Problem Solving

  • 14 - Science Word Problems
  • 15 - Geometric Principles in Science
  • 16 - Visualizing Problems in Science
  • 17 - Dimensional Analysis
  • 18 - Stoichiometry

V. Developing Scientific Research Skills

  • 19 - Scientific Databases
  • 20 - Graphing & Data Analysis
  • 21 - Mapping & Visualizing Data
  • 22 - Science Inquiry & Research
  • 23 - Science Projects & Fairs

VI. Resources for Teaching Science

  • 24 - Science Curriculum & Instruction
  • 25 - Planning Science Instruction
  • 26 - The Science Laboratory
  • 27 - Science Reference Information

Elements of Critical Thinking

Definition of critical thinking.

  • Identification of premises and conclusions .  Critical thinkers break arguments into basic statements and draw logical implications.
  • Clarification of arguments : Critical thinkers locate ambiguity and vagueness in arguments and propositions.
  • Establishment of facts :   Critical thinkers determine if the premises are reasonable and identify information that has been omitted or not collected.  They determine if the implications are logical and search for potentially contradictory data.
  • Evaluation of Logic : Critical thinkers determine if the premises support the conclusion. In deductive arguments, the conclusions must be true if the premises are true.  In inductive arguments, the conclusions are likely if the premises are true.
  • Final evaluation :  Critical thinkers weigh the evidence and arguments.  Supporting data, logic and evidence increase the weight of an argument.  Contradictions and lack of evidence decrease the weight of an argument.  Critical thinkers do not accept propositions if they think there is more evidence against them or if the argument is unclear, omits significant information, or has false premises or poor logic.
  • Norman Herr, Ph.D.

SEP home page

  • Table of Contents
  • Random Entry
  • Chronological
  • Editorial Information
  • About the SEP
  • Editorial Board
  • How to Cite the SEP
  • Special Characters
  • Advanced Tools
  • Support the SEP
  • PDFs for SEP Friends
  • Make a Donation
  • SEPIA for Libraries
  • Entry Contents

Bibliography

Academic tools.

  • Friends PDF Preview
  • Author and Citation Info
  • Back to Top

Critical Thinking

Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms for thinking carefully, and the thinking components on which they focus. Its adoption as an educational goal has been recommended on the basis of respect for students’ autonomy and preparing students for success in life and for democratic citizenship. “Critical thinkers” have the dispositions and abilities that lead them to think critically when appropriate. The abilities can be identified directly; the dispositions indirectly, by considering what factors contribute to or impede exercise of the abilities. Standardized tests have been developed to assess the degree to which a person possesses such dispositions and abilities. Educational intervention has been shown experimentally to improve them, particularly when it includes dialogue, anchored instruction, and mentoring. Controversies have arisen over the generalizability of critical thinking across domains, over alleged bias in critical thinking theories and instruction, and over the relationship of critical thinking to other types of thinking.

2.1 Dewey’s Three Main Examples

2.2 dewey’s other examples, 2.3 further examples, 2.4 non-examples, 3. the definition of critical thinking, 4. its value, 5. the process of thinking critically, 6. components of the process, 7. contributory dispositions and abilities, 8.1 initiating dispositions, 8.2 internal dispositions, 9. critical thinking abilities, 10. required knowledge, 11. educational methods, 12.1 the generalizability of critical thinking, 12.2 bias in critical thinking theory and pedagogy, 12.3 relationship of critical thinking to other types of thinking, other internet resources, related entries.

Use of the term ‘critical thinking’ to describe an educational goal goes back to the American philosopher John Dewey (1910), who more commonly called it ‘reflective thinking’. He defined it as

active, persistent and careful consideration of any belief or supposed form of knowledge in the light of the grounds that support it, and the further conclusions to which it tends. (Dewey 1910: 6; 1933: 9)

and identified a habit of such consideration with a scientific attitude of mind. His lengthy quotations of Francis Bacon, John Locke, and John Stuart Mill indicate that he was not the first person to propose development of a scientific attitude of mind as an educational goal.

In the 1930s, many of the schools that participated in the Eight-Year Study of the Progressive Education Association (Aikin 1942) adopted critical thinking as an educational goal, for whose achievement the study’s Evaluation Staff developed tests (Smith, Tyler, & Evaluation Staff 1942). Glaser (1941) showed experimentally that it was possible to improve the critical thinking of high school students. Bloom’s influential taxonomy of cognitive educational objectives (Bloom et al. 1956) incorporated critical thinking abilities. Ennis (1962) proposed 12 aspects of critical thinking as a basis for research on the teaching and evaluation of critical thinking ability.

Since 1980, an annual international conference in California on critical thinking and educational reform has attracted tens of thousands of educators from all levels of education and from many parts of the world. Also since 1980, the state university system in California has required all undergraduate students to take a critical thinking course. Since 1983, the Association for Informal Logic and Critical Thinking has sponsored sessions in conjunction with the divisional meetings of the American Philosophical Association (APA). In 1987, the APA’s Committee on Pre-College Philosophy commissioned a consensus statement on critical thinking for purposes of educational assessment and instruction (Facione 1990a). Researchers have developed standardized tests of critical thinking abilities and dispositions; for details, see the Supplement on Assessment . Educational jurisdictions around the world now include critical thinking in guidelines for curriculum and assessment.

For details on this history, see the Supplement on History .

2. Examples and Non-Examples

Before considering the definition of critical thinking, it will be helpful to have in mind some examples of critical thinking, as well as some examples of kinds of thinking that would apparently not count as critical thinking.

Dewey (1910: 68–71; 1933: 91–94) takes as paradigms of reflective thinking three class papers of students in which they describe their thinking. The examples range from the everyday to the scientific.

Transit : “The other day, when I was down town on 16th Street, a clock caught my eye. I saw that the hands pointed to 12:20. This suggested that I had an engagement at 124th Street, at one o’clock. I reasoned that as it had taken me an hour to come down on a surface car, I should probably be twenty minutes late if I returned the same way. I might save twenty minutes by a subway express. But was there a station near? If not, I might lose more than twenty minutes in looking for one. Then I thought of the elevated, and I saw there was such a line within two blocks. But where was the station? If it were several blocks above or below the street I was on, I should lose time instead of gaining it. My mind went back to the subway express as quicker than the elevated; furthermore, I remembered that it went nearer than the elevated to the part of 124th Street I wished to reach, so that time would be saved at the end of the journey. I concluded in favor of the subway, and reached my destination by one o’clock.” (Dewey 1910: 68–69; 1933: 91–92)

Ferryboat : “Projecting nearly horizontally from the upper deck of the ferryboat on which I daily cross the river is a long white pole, having a gilded ball at its tip. It suggested a flagpole when I first saw it; its color, shape, and gilded ball agreed with this idea, and these reasons seemed to justify me in this belief. But soon difficulties presented themselves. The pole was nearly horizontal, an unusual position for a flagpole; in the next place, there was no pulley, ring, or cord by which to attach a flag; finally, there were elsewhere on the boat two vertical staffs from which flags were occasionally flown. It seemed probable that the pole was not there for flag-flying.

“I then tried to imagine all possible purposes of the pole, and to consider for which of these it was best suited: (a) Possibly it was an ornament. But as all the ferryboats and even the tugboats carried poles, this hypothesis was rejected. (b) Possibly it was the terminal of a wireless telegraph. But the same considerations made this improbable. Besides, the more natural place for such a terminal would be the highest part of the boat, on top of the pilot house. (c) Its purpose might be to point out the direction in which the boat is moving.

“In support of this conclusion, I discovered that the pole was lower than the pilot house, so that the steersman could easily see it. Moreover, the tip was enough higher than the base, so that, from the pilot’s position, it must appear to project far out in front of the boat. Moreover, the pilot being near the front of the boat, he would need some such guide as to its direction. Tugboats would also need poles for such a purpose. This hypothesis was so much more probable than the others that I accepted it. I formed the conclusion that the pole was set up for the purpose of showing the pilot the direction in which the boat pointed, to enable him to steer correctly.” (Dewey 1910: 69–70; 1933: 92–93)

Bubbles : “In washing tumblers in hot soapsuds and placing them mouth downward on a plate, bubbles appeared on the outside of the mouth of the tumblers and then went inside. Why? The presence of bubbles suggests air, which I note must come from inside the tumbler. I see that the soapy water on the plate prevents escape of the air save as it may be caught in bubbles. But why should air leave the tumbler? There was no substance entering to force it out. It must have expanded. It expands by increase of heat, or by decrease of pressure, or both. Could the air have become heated after the tumbler was taken from the hot suds? Clearly not the air that was already entangled in the water. If heated air was the cause, cold air must have entered in transferring the tumblers from the suds to the plate. I test to see if this supposition is true by taking several more tumblers out. Some I shake so as to make sure of entrapping cold air in them. Some I take out holding mouth downward in order to prevent cold air from entering. Bubbles appear on the outside of every one of the former and on none of the latter. I must be right in my inference. Air from the outside must have been expanded by the heat of the tumbler, which explains the appearance of the bubbles on the outside. But why do they then go inside? Cold contracts. The tumbler cooled and also the air inside it. Tension was removed, and hence bubbles appeared inside. To be sure of this, I test by placing a cup of ice on the tumbler while the bubbles are still forming outside. They soon reverse” (Dewey 1910: 70–71; 1933: 93–94).

Dewey (1910, 1933) sprinkles his book with other examples of critical thinking. We will refer to the following.

Weather : A man on a walk notices that it has suddenly become cool, thinks that it is probably going to rain, looks up and sees a dark cloud obscuring the sun, and quickens his steps (1910: 6–10; 1933: 9–13).

Disorder : A man finds his rooms on his return to them in disorder with his belongings thrown about, thinks at first of burglary as an explanation, then thinks of mischievous children as being an alternative explanation, then looks to see whether valuables are missing, and discovers that they are (1910: 82–83; 1933: 166–168).

Typhoid : A physician diagnosing a patient whose conspicuous symptoms suggest typhoid avoids drawing a conclusion until more data are gathered by questioning the patient and by making tests (1910: 85–86; 1933: 170).

Blur : A moving blur catches our eye in the distance, we ask ourselves whether it is a cloud of whirling dust or a tree moving its branches or a man signaling to us, we think of other traits that should be found on each of those possibilities, and we look and see if those traits are found (1910: 102, 108; 1933: 121, 133).

Suction pump : In thinking about the suction pump, the scientist first notes that it will draw water only to a maximum height of 33 feet at sea level and to a lesser maximum height at higher elevations, selects for attention the differing atmospheric pressure at these elevations, sets up experiments in which the air is removed from a vessel containing water (when suction no longer works) and in which the weight of air at various levels is calculated, compares the results of reasoning about the height to which a given weight of air will allow a suction pump to raise water with the observed maximum height at different elevations, and finally assimilates the suction pump to such apparently different phenomena as the siphon and the rising of a balloon (1910: 150–153; 1933: 195–198).

Diamond : A passenger in a car driving in a diamond lane reserved for vehicles with at least one passenger notices that the diamond marks on the pavement are far apart in some places and close together in others. Why? The driver suggests that the reason may be that the diamond marks are not needed where there is a solid double line separating the diamond lane from the adjoining lane, but are needed when there is a dotted single line permitting crossing into the diamond lane. Further observation confirms that the diamonds are close together when a dotted line separates the diamond lane from its neighbour, but otherwise far apart.

Rash : A woman suddenly develops a very itchy red rash on her throat and upper chest. She recently noticed a mark on the back of her right hand, but was not sure whether the mark was a rash or a scrape. She lies down in bed and thinks about what might be causing the rash and what to do about it. About two weeks before, she began taking blood pressure medication that contained a sulfa drug, and the pharmacist had warned her, in view of a previous allergic reaction to a medication containing a sulfa drug, to be on the alert for an allergic reaction; however, she had been taking the medication for two weeks with no such effect. The day before, she began using a new cream on her neck and upper chest; against the new cream as the cause was mark on the back of her hand, which had not been exposed to the cream. She began taking probiotics about a month before. She also recently started new eye drops, but she supposed that manufacturers of eye drops would be careful not to include allergy-causing components in the medication. The rash might be a heat rash, since she recently was sweating profusely from her upper body. Since she is about to go away on a short vacation, where she would not have access to her usual physician, she decides to keep taking the probiotics and using the new eye drops but to discontinue the blood pressure medication and to switch back to the old cream for her neck and upper chest. She forms a plan to consult her regular physician on her return about the blood pressure medication.

Candidate : Although Dewey included no examples of thinking directed at appraising the arguments of others, such thinking has come to be considered a kind of critical thinking. We find an example of such thinking in the performance task on the Collegiate Learning Assessment (CLA+), which its sponsoring organization describes as

a performance-based assessment that provides a measure of an institution’s contribution to the development of critical-thinking and written communication skills of its students. (Council for Aid to Education 2017)

A sample task posted on its website requires the test-taker to write a report for public distribution evaluating a fictional candidate’s policy proposals and their supporting arguments, using supplied background documents, with a recommendation on whether to endorse the candidate.

Immediate acceptance of an idea that suggests itself as a solution to a problem (e.g., a possible explanation of an event or phenomenon, an action that seems likely to produce a desired result) is “uncritical thinking, the minimum of reflection” (Dewey 1910: 13). On-going suspension of judgment in the light of doubt about a possible solution is not critical thinking (Dewey 1910: 108). Critique driven by a dogmatically held political or religious ideology is not critical thinking; thus Paulo Freire (1968 [1970]) is using the term (e.g., at 1970: 71, 81, 100, 146) in a more politically freighted sense that includes not only reflection but also revolutionary action against oppression. Derivation of a conclusion from given data using an algorithm is not critical thinking.

What is critical thinking? There are many definitions. Ennis (2016) lists 14 philosophically oriented scholarly definitions and three dictionary definitions. Following Rawls (1971), who distinguished his conception of justice from a utilitarian conception but regarded them as rival conceptions of the same concept, Ennis maintains that the 17 definitions are different conceptions of the same concept. Rawls articulated the shared concept of justice as

a characteristic set of principles for assigning basic rights and duties and for determining… the proper distribution of the benefits and burdens of social cooperation. (Rawls 1971: 5)

Bailin et al. (1999b) claim that, if one considers what sorts of thinking an educator would take not to be critical thinking and what sorts to be critical thinking, one can conclude that educators typically understand critical thinking to have at least three features.

  • It is done for the purpose of making up one’s mind about what to believe or do.
  • The person engaging in the thinking is trying to fulfill standards of adequacy and accuracy appropriate to the thinking.
  • The thinking fulfills the relevant standards to some threshold level.

One could sum up the core concept that involves these three features by saying that critical thinking is careful goal-directed thinking. This core concept seems to apply to all the examples of critical thinking described in the previous section. As for the non-examples, their exclusion depends on construing careful thinking as excluding jumping immediately to conclusions, suspending judgment no matter how strong the evidence, reasoning from an unquestioned ideological or religious perspective, and routinely using an algorithm to answer a question.

If the core of critical thinking is careful goal-directed thinking, conceptions of it can vary according to its presumed scope, its presumed goal, one’s criteria and threshold for being careful, and the thinking component on which one focuses. As to its scope, some conceptions (e.g., Dewey 1910, 1933) restrict it to constructive thinking on the basis of one’s own observations and experiments, others (e.g., Ennis 1962; Fisher & Scriven 1997; Johnson 1992) to appraisal of the products of such thinking. Ennis (1991) and Bailin et al. (1999b) take it to cover both construction and appraisal. As to its goal, some conceptions restrict it to forming a judgment (Dewey 1910, 1933; Lipman 1987; Facione 1990a). Others allow for actions as well as beliefs as the end point of a process of critical thinking (Ennis 1991; Bailin et al. 1999b). As to the criteria and threshold for being careful, definitions vary in the term used to indicate that critical thinking satisfies certain norms: “intellectually disciplined” (Scriven & Paul 1987), “reasonable” (Ennis 1991), “skillful” (Lipman 1987), “skilled” (Fisher & Scriven 1997), “careful” (Bailin & Battersby 2009). Some definitions specify these norms, referring variously to “consideration of any belief or supposed form of knowledge in the light of the grounds that support it and the further conclusions to which it tends” (Dewey 1910, 1933); “the methods of logical inquiry and reasoning” (Glaser 1941); “conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication” (Scriven & Paul 1987); the requirement that “it is sensitive to context, relies on criteria, and is self-correcting” (Lipman 1987); “evidential, conceptual, methodological, criteriological, or contextual considerations” (Facione 1990a); and “plus-minus considerations of the product in terms of appropriate standards (or criteria)” (Johnson 1992). Stanovich and Stanovich (2010) propose to ground the concept of critical thinking in the concept of rationality, which they understand as combining epistemic rationality (fitting one’s beliefs to the world) and instrumental rationality (optimizing goal fulfillment); a critical thinker, in their view, is someone with “a propensity to override suboptimal responses from the autonomous mind” (2010: 227). These variant specifications of norms for critical thinking are not necessarily incompatible with one another, and in any case presuppose the core notion of thinking carefully. As to the thinking component singled out, some definitions focus on suspension of judgment during the thinking (Dewey 1910; McPeck 1981), others on inquiry while judgment is suspended (Bailin & Battersby 2009, 2021), others on the resulting judgment (Facione 1990a), and still others on responsiveness to reasons (Siegel 1988). Kuhn (2019) takes critical thinking to be more a dialogic practice of advancing and responding to arguments than an individual ability.

In educational contexts, a definition of critical thinking is a “programmatic definition” (Scheffler 1960: 19). It expresses a practical program for achieving an educational goal. For this purpose, a one-sentence formulaic definition is much less useful than articulation of a critical thinking process, with criteria and standards for the kinds of thinking that the process may involve. The real educational goal is recognition, adoption and implementation by students of those criteria and standards. That adoption and implementation in turn consists in acquiring the knowledge, abilities and dispositions of a critical thinker.

Conceptions of critical thinking generally do not include moral integrity as part of the concept. Dewey, for example, took critical thinking to be the ultimate intellectual goal of education, but distinguished it from the development of social cooperation among school children, which he took to be the central moral goal. Ennis (1996, 2011) added to his previous list of critical thinking dispositions a group of dispositions to care about the dignity and worth of every person, which he described as a “correlative” (1996) disposition without which critical thinking would be less valuable and perhaps harmful. An educational program that aimed at developing critical thinking but not the correlative disposition to care about the dignity and worth of every person, he asserted, “would be deficient and perhaps dangerous” (Ennis 1996: 172).

Dewey thought that education for reflective thinking would be of value to both the individual and society; recognition in educational practice of the kinship to the scientific attitude of children’s native curiosity, fertile imagination and love of experimental inquiry “would make for individual happiness and the reduction of social waste” (Dewey 1910: iii). Schools participating in the Eight-Year Study took development of the habit of reflective thinking and skill in solving problems as a means to leading young people to understand, appreciate and live the democratic way of life characteristic of the United States (Aikin 1942: 17–18, 81). Harvey Siegel (1988: 55–61) has offered four considerations in support of adopting critical thinking as an educational ideal. (1) Respect for persons requires that schools and teachers honour students’ demands for reasons and explanations, deal with students honestly, and recognize the need to confront students’ independent judgment; these requirements concern the manner in which teachers treat students. (2) Education has the task of preparing children to be successful adults, a task that requires development of their self-sufficiency. (3) Education should initiate children into the rational traditions in such fields as history, science and mathematics. (4) Education should prepare children to become democratic citizens, which requires reasoned procedures and critical talents and attitudes. To supplement these considerations, Siegel (1988: 62–90) responds to two objections: the ideology objection that adoption of any educational ideal requires a prior ideological commitment and the indoctrination objection that cultivation of critical thinking cannot escape being a form of indoctrination.

Despite the diversity of our 11 examples, one can recognize a common pattern. Dewey analyzed it as consisting of five phases:

  • suggestions , in which the mind leaps forward to a possible solution;
  • an intellectualization of the difficulty or perplexity into a problem to be solved, a question for which the answer must be sought;
  • the use of one suggestion after another as a leading idea, or hypothesis , to initiate and guide observation and other operations in collection of factual material;
  • the mental elaboration of the idea or supposition as an idea or supposition ( reasoning , in the sense on which reasoning is a part, not the whole, of inference); and
  • testing the hypothesis by overt or imaginative action. (Dewey 1933: 106–107; italics in original)

The process of reflective thinking consisting of these phases would be preceded by a perplexed, troubled or confused situation and followed by a cleared-up, unified, resolved situation (Dewey 1933: 106). The term ‘phases’ replaced the term ‘steps’ (Dewey 1910: 72), thus removing the earlier suggestion of an invariant sequence. Variants of the above analysis appeared in (Dewey 1916: 177) and (Dewey 1938: 101–119).

The variant formulations indicate the difficulty of giving a single logical analysis of such a varied process. The process of critical thinking may have a spiral pattern, with the problem being redefined in the light of obstacles to solving it as originally formulated. For example, the person in Transit might have concluded that getting to the appointment at the scheduled time was impossible and have reformulated the problem as that of rescheduling the appointment for a mutually convenient time. Further, defining a problem does not always follow after or lead immediately to an idea of a suggested solution. Nor should it do so, as Dewey himself recognized in describing the physician in Typhoid as avoiding any strong preference for this or that conclusion before getting further information (Dewey 1910: 85; 1933: 170). People with a hypothesis in mind, even one to which they have a very weak commitment, have a so-called “confirmation bias” (Nickerson 1998): they are likely to pay attention to evidence that confirms the hypothesis and to ignore evidence that counts against it or for some competing hypothesis. Detectives, intelligence agencies, and investigators of airplane accidents are well advised to gather relevant evidence systematically and to postpone even tentative adoption of an explanatory hypothesis until the collected evidence rules out with the appropriate degree of certainty all but one explanation. Dewey’s analysis of the critical thinking process can be faulted as well for requiring acceptance or rejection of a possible solution to a defined problem, with no allowance for deciding in the light of the available evidence to suspend judgment. Further, given the great variety of kinds of problems for which reflection is appropriate, there is likely to be variation in its component events. Perhaps the best way to conceptualize the critical thinking process is as a checklist whose component events can occur in a variety of orders, selectively, and more than once. These component events might include (1) noticing a difficulty, (2) defining the problem, (3) dividing the problem into manageable sub-problems, (4) formulating a variety of possible solutions to the problem or sub-problem, (5) determining what evidence is relevant to deciding among possible solutions to the problem or sub-problem, (6) devising a plan of systematic observation or experiment that will uncover the relevant evidence, (7) carrying out the plan of systematic observation or experimentation, (8) noting the results of the systematic observation or experiment, (9) gathering relevant testimony and information from others, (10) judging the credibility of testimony and information gathered from others, (11) drawing conclusions from gathered evidence and accepted testimony, and (12) accepting a solution that the evidence adequately supports (cf. Hitchcock 2017: 485).

Checklist conceptions of the process of critical thinking are open to the objection that they are too mechanical and procedural to fit the multi-dimensional and emotionally charged issues for which critical thinking is urgently needed (Paul 1984). For such issues, a more dialectical process is advocated, in which competing relevant world views are identified, their implications explored, and some sort of creative synthesis attempted.

If one considers the critical thinking process illustrated by the 11 examples, one can identify distinct kinds of mental acts and mental states that form part of it. To distinguish, label and briefly characterize these components is a useful preliminary to identifying abilities, skills, dispositions, attitudes, habits and the like that contribute causally to thinking critically. Identifying such abilities and habits is in turn a useful preliminary to setting educational goals. Setting the goals is in its turn a useful preliminary to designing strategies for helping learners to achieve the goals and to designing ways of measuring the extent to which learners have done so. Such measures provide both feedback to learners on their achievement and a basis for experimental research on the effectiveness of various strategies for educating people to think critically. Let us begin, then, by distinguishing the kinds of mental acts and mental events that can occur in a critical thinking process.

  • Observing : One notices something in one’s immediate environment (sudden cooling of temperature in Weather , bubbles forming outside a glass and then going inside in Bubbles , a moving blur in the distance in Blur , a rash in Rash ). Or one notes the results of an experiment or systematic observation (valuables missing in Disorder , no suction without air pressure in Suction pump )
  • Feeling : One feels puzzled or uncertain about something (how to get to an appointment on time in Transit , why the diamonds vary in spacing in Diamond ). One wants to resolve this perplexity. One feels satisfaction once one has worked out an answer (to take the subway express in Transit , diamonds closer when needed as a warning in Diamond ).
  • Wondering : One formulates a question to be addressed (why bubbles form outside a tumbler taken from hot water in Bubbles , how suction pumps work in Suction pump , what caused the rash in Rash ).
  • Imagining : One thinks of possible answers (bus or subway or elevated in Transit , flagpole or ornament or wireless communication aid or direction indicator in Ferryboat , allergic reaction or heat rash in Rash ).
  • Inferring : One works out what would be the case if a possible answer were assumed (valuables missing if there has been a burglary in Disorder , earlier start to the rash if it is an allergic reaction to a sulfa drug in Rash ). Or one draws a conclusion once sufficient relevant evidence is gathered (take the subway in Transit , burglary in Disorder , discontinue blood pressure medication and new cream in Rash ).
  • Knowledge : One uses stored knowledge of the subject-matter to generate possible answers or to infer what would be expected on the assumption of a particular answer (knowledge of a city’s public transit system in Transit , of the requirements for a flagpole in Ferryboat , of Boyle’s law in Bubbles , of allergic reactions in Rash ).
  • Experimenting : One designs and carries out an experiment or a systematic observation to find out whether the results deduced from a possible answer will occur (looking at the location of the flagpole in relation to the pilot’s position in Ferryboat , putting an ice cube on top of a tumbler taken from hot water in Bubbles , measuring the height to which a suction pump will draw water at different elevations in Suction pump , noticing the spacing of diamonds when movement to or from a diamond lane is allowed in Diamond ).
  • Consulting : One finds a source of information, gets the information from the source, and makes a judgment on whether to accept it. None of our 11 examples include searching for sources of information. In this respect they are unrepresentative, since most people nowadays have almost instant access to information relevant to answering any question, including many of those illustrated by the examples. However, Candidate includes the activities of extracting information from sources and evaluating its credibility.
  • Identifying and analyzing arguments : One notices an argument and works out its structure and content as a preliminary to evaluating its strength. This activity is central to Candidate . It is an important part of a critical thinking process in which one surveys arguments for various positions on an issue.
  • Judging : One makes a judgment on the basis of accumulated evidence and reasoning, such as the judgment in Ferryboat that the purpose of the pole is to provide direction to the pilot.
  • Deciding : One makes a decision on what to do or on what policy to adopt, as in the decision in Transit to take the subway.

By definition, a person who does something voluntarily is both willing and able to do that thing at that time. Both the willingness and the ability contribute causally to the person’s action, in the sense that the voluntary action would not occur if either (or both) of these were lacking. For example, suppose that one is standing with one’s arms at one’s sides and one voluntarily lifts one’s right arm to an extended horizontal position. One would not do so if one were unable to lift one’s arm, if for example one’s right side was paralyzed as the result of a stroke. Nor would one do so if one were unwilling to lift one’s arm, if for example one were participating in a street demonstration at which a white supremacist was urging the crowd to lift their right arm in a Nazi salute and one were unwilling to express support in this way for the racist Nazi ideology. The same analysis applies to a voluntary mental process of thinking critically. It requires both willingness and ability to think critically, including willingness and ability to perform each of the mental acts that compose the process and to coordinate those acts in a sequence that is directed at resolving the initiating perplexity.

Consider willingness first. We can identify causal contributors to willingness to think critically by considering factors that would cause a person who was able to think critically about an issue nevertheless not to do so (Hamby 2014). For each factor, the opposite condition thus contributes causally to willingness to think critically on a particular occasion. For example, people who habitually jump to conclusions without considering alternatives will not think critically about issues that arise, even if they have the required abilities. The contrary condition of willingness to suspend judgment is thus a causal contributor to thinking critically.

Now consider ability. In contrast to the ability to move one’s arm, which can be completely absent because a stroke has left the arm paralyzed, the ability to think critically is a developed ability, whose absence is not a complete absence of ability to think but absence of ability to think well. We can identify the ability to think well directly, in terms of the norms and standards for good thinking. In general, to be able do well the thinking activities that can be components of a critical thinking process, one needs to know the concepts and principles that characterize their good performance, to recognize in particular cases that the concepts and principles apply, and to apply them. The knowledge, recognition and application may be procedural rather than declarative. It may be domain-specific rather than widely applicable, and in either case may need subject-matter knowledge, sometimes of a deep kind.

Reflections of the sort illustrated by the previous two paragraphs have led scholars to identify the knowledge, abilities and dispositions of a “critical thinker”, i.e., someone who thinks critically whenever it is appropriate to do so. We turn now to these three types of causal contributors to thinking critically. We start with dispositions, since arguably these are the most powerful contributors to being a critical thinker, can be fostered at an early stage of a child’s development, and are susceptible to general improvement (Glaser 1941: 175)

8. Critical Thinking Dispositions

Educational researchers use the term ‘dispositions’ broadly for the habits of mind and attitudes that contribute causally to being a critical thinker. Some writers (e.g., Paul & Elder 2006; Hamby 2014; Bailin & Battersby 2016a) propose to use the term ‘virtues’ for this dimension of a critical thinker. The virtues in question, although they are virtues of character, concern the person’s ways of thinking rather than the person’s ways of behaving towards others. They are not moral virtues but intellectual virtues, of the sort articulated by Zagzebski (1996) and discussed by Turri, Alfano, and Greco (2017).

On a realistic conception, thinking dispositions or intellectual virtues are real properties of thinkers. They are general tendencies, propensities, or inclinations to think in particular ways in particular circumstances, and can be genuinely explanatory (Siegel 1999). Sceptics argue that there is no evidence for a specific mental basis for the habits of mind that contribute to thinking critically, and that it is pedagogically misleading to posit such a basis (Bailin et al. 1999a). Whatever their status, critical thinking dispositions need motivation for their initial formation in a child—motivation that may be external or internal. As children develop, the force of habit will gradually become important in sustaining the disposition (Nieto & Valenzuela 2012). Mere force of habit, however, is unlikely to sustain critical thinking dispositions. Critical thinkers must value and enjoy using their knowledge and abilities to think things through for themselves. They must be committed to, and lovers of, inquiry.

A person may have a critical thinking disposition with respect to only some kinds of issues. For example, one could be open-minded about scientific issues but not about religious issues. Similarly, one could be confident in one’s ability to reason about the theological implications of the existence of evil in the world but not in one’s ability to reason about the best design for a guided ballistic missile.

Facione (1990a: 25) divides “affective dispositions” of critical thinking into approaches to life and living in general and approaches to specific issues, questions or problems. Adapting this distinction, one can usefully divide critical thinking dispositions into initiating dispositions (those that contribute causally to starting to think critically about an issue) and internal dispositions (those that contribute causally to doing a good job of thinking critically once one has started). The two categories are not mutually exclusive. For example, open-mindedness, in the sense of willingness to consider alternative points of view to one’s own, is both an initiating and an internal disposition.

Using the strategy of considering factors that would block people with the ability to think critically from doing so, we can identify as initiating dispositions for thinking critically attentiveness, a habit of inquiry, self-confidence, courage, open-mindedness, willingness to suspend judgment, trust in reason, wanting evidence for one’s beliefs, and seeking the truth. We consider briefly what each of these dispositions amounts to, in each case citing sources that acknowledge them.

  • Attentiveness : One will not think critically if one fails to recognize an issue that needs to be thought through. For example, the pedestrian in Weather would not have looked up if he had not noticed that the air was suddenly cooler. To be a critical thinker, then, one needs to be habitually attentive to one’s surroundings, noticing not only what one senses but also sources of perplexity in messages received and in one’s own beliefs and attitudes (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Habit of inquiry : Inquiry is effortful, and one needs an internal push to engage in it. For example, the student in Bubbles could easily have stopped at idle wondering about the cause of the bubbles rather than reasoning to a hypothesis, then designing and executing an experiment to test it. Thus willingness to think critically needs mental energy and initiative. What can supply that energy? Love of inquiry, or perhaps just a habit of inquiry. Hamby (2015) has argued that willingness to inquire is the central critical thinking virtue, one that encompasses all the others. It is recognized as a critical thinking disposition by Dewey (1910: 29; 1933: 35), Glaser (1941: 5), Ennis (1987: 12; 1991: 8), Facione (1990a: 25), Bailin et al. (1999b: 294), Halpern (1998: 452), and Facione, Facione, & Giancarlo (2001).
  • Self-confidence : Lack of confidence in one’s abilities can block critical thinking. For example, if the woman in Rash lacked confidence in her ability to figure things out for herself, she might just have assumed that the rash on her chest was the allergic reaction to her medication against which the pharmacist had warned her. Thus willingness to think critically requires confidence in one’s ability to inquire (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Courage : Fear of thinking for oneself can stop one from doing it. Thus willingness to think critically requires intellectual courage (Paul & Elder 2006: 16).
  • Open-mindedness : A dogmatic attitude will impede thinking critically. For example, a person who adheres rigidly to a “pro-choice” position on the issue of the legal status of induced abortion is likely to be unwilling to consider seriously the issue of when in its development an unborn child acquires a moral right to life. Thus willingness to think critically requires open-mindedness, in the sense of a willingness to examine questions to which one already accepts an answer but which further evidence or reasoning might cause one to answer differently (Dewey 1933; Facione 1990a; Ennis 1991; Bailin et al. 1999b; Halpern 1998, Facione, Facione, & Giancarlo 2001). Paul (1981) emphasizes open-mindedness about alternative world-views, and recommends a dialectical approach to integrating such views as central to what he calls “strong sense” critical thinking. In three studies, Haran, Ritov, & Mellers (2013) found that actively open-minded thinking, including “the tendency to weigh new evidence against a favored belief, to spend sufficient time on a problem before giving up, and to consider carefully the opinions of others in forming one’s own”, led study participants to acquire information and thus to make accurate estimations.
  • Willingness to suspend judgment : Premature closure on an initial solution will block critical thinking. Thus willingness to think critically requires a willingness to suspend judgment while alternatives are explored (Facione 1990a; Ennis 1991; Halpern 1998).
  • Trust in reason : Since distrust in the processes of reasoned inquiry will dissuade one from engaging in it, trust in them is an initiating critical thinking disposition (Facione 1990a, 25; Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001; Paul & Elder 2006). In reaction to an allegedly exclusive emphasis on reason in critical thinking theory and pedagogy, Thayer-Bacon (2000) argues that intuition, imagination, and emotion have important roles to play in an adequate conception of critical thinking that she calls “constructive thinking”. From her point of view, critical thinking requires trust not only in reason but also in intuition, imagination, and emotion.
  • Seeking the truth : If one does not care about the truth but is content to stick with one’s initial bias on an issue, then one will not think critically about it. Seeking the truth is thus an initiating critical thinking disposition (Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001). A disposition to seek the truth is implicit in more specific critical thinking dispositions, such as trying to be well-informed, considering seriously points of view other than one’s own, looking for alternatives, suspending judgment when the evidence is insufficient, and adopting a position when the evidence supporting it is sufficient.

Some of the initiating dispositions, such as open-mindedness and willingness to suspend judgment, are also internal critical thinking dispositions, in the sense of mental habits or attitudes that contribute causally to doing a good job of critical thinking once one starts the process. But there are many other internal critical thinking dispositions. Some of them are parasitic on one’s conception of good thinking. For example, it is constitutive of good thinking about an issue to formulate the issue clearly and to maintain focus on it. For this purpose, one needs not only the corresponding ability but also the corresponding disposition. Ennis (1991: 8) describes it as the disposition “to determine and maintain focus on the conclusion or question”, Facione (1990a: 25) as “clarity in stating the question or concern”. Other internal dispositions are motivators to continue or adjust the critical thinking process, such as willingness to persist in a complex task and willingness to abandon nonproductive strategies in an attempt to self-correct (Halpern 1998: 452). For a list of identified internal critical thinking dispositions, see the Supplement on Internal Critical Thinking Dispositions .

Some theorists postulate skills, i.e., acquired abilities, as operative in critical thinking. It is not obvious, however, that a good mental act is the exercise of a generic acquired skill. Inferring an expected time of arrival, as in Transit , has some generic components but also uses non-generic subject-matter knowledge. Bailin et al. (1999a) argue against viewing critical thinking skills as generic and discrete, on the ground that skilled performance at a critical thinking task cannot be separated from knowledge of concepts and from domain-specific principles of good thinking. Talk of skills, they concede, is unproblematic if it means merely that a person with critical thinking skills is capable of intelligent performance.

Despite such scepticism, theorists of critical thinking have listed as general contributors to critical thinking what they variously call abilities (Glaser 1941; Ennis 1962, 1991), skills (Facione 1990a; Halpern 1998) or competencies (Fisher & Scriven 1997). Amalgamating these lists would produce a confusing and chaotic cornucopia of more than 50 possible educational objectives, with only partial overlap among them. It makes sense instead to try to understand the reasons for the multiplicity and diversity, and to make a selection according to one’s own reasons for singling out abilities to be developed in a critical thinking curriculum. Two reasons for diversity among lists of critical thinking abilities are the underlying conception of critical thinking and the envisaged educational level. Appraisal-only conceptions, for example, involve a different suite of abilities than constructive-only conceptions. Some lists, such as those in (Glaser 1941), are put forward as educational objectives for secondary school students, whereas others are proposed as objectives for college students (e.g., Facione 1990a).

The abilities described in the remaining paragraphs of this section emerge from reflection on the general abilities needed to do well the thinking activities identified in section 6 as components of the critical thinking process described in section 5 . The derivation of each collection of abilities is accompanied by citation of sources that list such abilities and of standardized tests that claim to test them.

Observational abilities : Careful and accurate observation sometimes requires specialist expertise and practice, as in the case of observing birds and observing accident scenes. However, there are general abilities of noticing what one’s senses are picking up from one’s environment and of being able to articulate clearly and accurately to oneself and others what one has observed. It helps in exercising them to be able to recognize and take into account factors that make one’s observation less trustworthy, such as prior framing of the situation, inadequate time, deficient senses, poor observation conditions, and the like. It helps as well to be skilled at taking steps to make one’s observation more trustworthy, such as moving closer to get a better look, measuring something three times and taking the average, and checking what one thinks one is observing with someone else who is in a good position to observe it. It also helps to be skilled at recognizing respects in which one’s report of one’s observation involves inference rather than direct observation, so that one can then consider whether the inference is justified. These abilities come into play as well when one thinks about whether and with what degree of confidence to accept an observation report, for example in the study of history or in a criminal investigation or in assessing news reports. Observational abilities show up in some lists of critical thinking abilities (Ennis 1962: 90; Facione 1990a: 16; Ennis 1991: 9). There are items testing a person’s ability to judge the credibility of observation reports in the Cornell Critical Thinking Tests, Levels X and Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). Norris and King (1983, 1985, 1990a, 1990b) is a test of ability to appraise observation reports.

Emotional abilities : The emotions that drive a critical thinking process are perplexity or puzzlement, a wish to resolve it, and satisfaction at achieving the desired resolution. Children experience these emotions at an early age, without being trained to do so. Education that takes critical thinking as a goal needs only to channel these emotions and to make sure not to stifle them. Collaborative critical thinking benefits from ability to recognize one’s own and others’ emotional commitments and reactions.

Questioning abilities : A critical thinking process needs transformation of an inchoate sense of perplexity into a clear question. Formulating a question well requires not building in questionable assumptions, not prejudging the issue, and using language that in context is unambiguous and precise enough (Ennis 1962: 97; 1991: 9).

Imaginative abilities : Thinking directed at finding the correct causal explanation of a general phenomenon or particular event requires an ability to imagine possible explanations. Thinking about what policy or plan of action to adopt requires generation of options and consideration of possible consequences of each option. Domain knowledge is required for such creative activity, but a general ability to imagine alternatives is helpful and can be nurtured so as to become easier, quicker, more extensive, and deeper (Dewey 1910: 34–39; 1933: 40–47). Facione (1990a) and Halpern (1998) include the ability to imagine alternatives as a critical thinking ability.

Inferential abilities : The ability to draw conclusions from given information, and to recognize with what degree of certainty one’s own or others’ conclusions follow, is universally recognized as a general critical thinking ability. All 11 examples in section 2 of this article include inferences, some from hypotheses or options (as in Transit , Ferryboat and Disorder ), others from something observed (as in Weather and Rash ). None of these inferences is formally valid. Rather, they are licensed by general, sometimes qualified substantive rules of inference (Toulmin 1958) that rest on domain knowledge—that a bus trip takes about the same time in each direction, that the terminal of a wireless telegraph would be located on the highest possible place, that sudden cooling is often followed by rain, that an allergic reaction to a sulfa drug generally shows up soon after one starts taking it. It is a matter of controversy to what extent the specialized ability to deduce conclusions from premisses using formal rules of inference is needed for critical thinking. Dewey (1933) locates logical forms in setting out the products of reflection rather than in the process of reflection. Ennis (1981a), on the other hand, maintains that a liberally-educated person should have the following abilities: to translate natural-language statements into statements using the standard logical operators, to use appropriately the language of necessary and sufficient conditions, to deal with argument forms and arguments containing symbols, to determine whether in virtue of an argument’s form its conclusion follows necessarily from its premisses, to reason with logically complex propositions, and to apply the rules and procedures of deductive logic. Inferential abilities are recognized as critical thinking abilities by Glaser (1941: 6), Facione (1990a: 9), Ennis (1991: 9), Fisher & Scriven (1997: 99, 111), and Halpern (1998: 452). Items testing inferential abilities constitute two of the five subtests of the Watson Glaser Critical Thinking Appraisal (Watson & Glaser 1980a, 1980b, 1994), two of the four sections in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), three of the seven sections in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), 11 of the 34 items on Forms A and B of the California Critical Thinking Skills Test (Facione 1990b, 1992), and a high but variable proportion of the 25 selected-response questions in the Collegiate Learning Assessment (Council for Aid to Education 2017).

Experimenting abilities : Knowing how to design and execute an experiment is important not just in scientific research but also in everyday life, as in Rash . Dewey devoted a whole chapter of his How We Think (1910: 145–156; 1933: 190–202) to the superiority of experimentation over observation in advancing knowledge. Experimenting abilities come into play at one remove in appraising reports of scientific studies. Skill in designing and executing experiments includes the acknowledged abilities to appraise evidence (Glaser 1941: 6), to carry out experiments and to apply appropriate statistical inference techniques (Facione 1990a: 9), to judge inductions to an explanatory hypothesis (Ennis 1991: 9), and to recognize the need for an adequately large sample size (Halpern 1998). The Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) includes four items (out of 52) on experimental design. The Collegiate Learning Assessment (Council for Aid to Education 2017) makes room for appraisal of study design in both its performance task and its selected-response questions.

Consulting abilities : Skill at consulting sources of information comes into play when one seeks information to help resolve a problem, as in Candidate . Ability to find and appraise information includes ability to gather and marshal pertinent information (Glaser 1941: 6), to judge whether a statement made by an alleged authority is acceptable (Ennis 1962: 84), to plan a search for desired information (Facione 1990a: 9), and to judge the credibility of a source (Ennis 1991: 9). Ability to judge the credibility of statements is tested by 24 items (out of 76) in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) and by four items (out of 52) in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). The College Learning Assessment’s performance task requires evaluation of whether information in documents is credible or unreliable (Council for Aid to Education 2017).

Argument analysis abilities : The ability to identify and analyze arguments contributes to the process of surveying arguments on an issue in order to form one’s own reasoned judgment, as in Candidate . The ability to detect and analyze arguments is recognized as a critical thinking skill by Facione (1990a: 7–8), Ennis (1991: 9) and Halpern (1998). Five items (out of 34) on the California Critical Thinking Skills Test (Facione 1990b, 1992) test skill at argument analysis. The College Learning Assessment (Council for Aid to Education 2017) incorporates argument analysis in its selected-response tests of critical reading and evaluation and of critiquing an argument.

Judging skills and deciding skills : Skill at judging and deciding is skill at recognizing what judgment or decision the available evidence and argument supports, and with what degree of confidence. It is thus a component of the inferential skills already discussed.

Lists and tests of critical thinking abilities often include two more abilities: identifying assumptions and constructing and evaluating definitions.

In addition to dispositions and abilities, critical thinking needs knowledge: of critical thinking concepts, of critical thinking principles, and of the subject-matter of the thinking.

We can derive a short list of concepts whose understanding contributes to critical thinking from the critical thinking abilities described in the preceding section. Observational abilities require an understanding of the difference between observation and inference. Questioning abilities require an understanding of the concepts of ambiguity and vagueness. Inferential abilities require an understanding of the difference between conclusive and defeasible inference (traditionally, between deduction and induction), as well as of the difference between necessary and sufficient conditions. Experimenting abilities require an understanding of the concepts of hypothesis, null hypothesis, assumption and prediction, as well as of the concept of statistical significance and of its difference from importance. They also require an understanding of the difference between an experiment and an observational study, and in particular of the difference between a randomized controlled trial, a prospective correlational study and a retrospective (case-control) study. Argument analysis abilities require an understanding of the concepts of argument, premiss, assumption, conclusion and counter-consideration. Additional critical thinking concepts are proposed by Bailin et al. (1999b: 293), Fisher & Scriven (1997: 105–106), Black (2012), and Blair (2021).

According to Glaser (1941: 25), ability to think critically requires knowledge of the methods of logical inquiry and reasoning. If we review the list of abilities in the preceding section, however, we can see that some of them can be acquired and exercised merely through practice, possibly guided in an educational setting, followed by feedback. Searching intelligently for a causal explanation of some phenomenon or event requires that one consider a full range of possible causal contributors, but it seems more important that one implements this principle in one’s practice than that one is able to articulate it. What is important is “operational knowledge” of the standards and principles of good thinking (Bailin et al. 1999b: 291–293). But the development of such critical thinking abilities as designing an experiment or constructing an operational definition can benefit from learning their underlying theory. Further, explicit knowledge of quirks of human thinking seems useful as a cautionary guide. Human memory is not just fallible about details, as people learn from their own experiences of misremembering, but is so malleable that a detailed, clear and vivid recollection of an event can be a total fabrication (Loftus 2017). People seek or interpret evidence in ways that are partial to their existing beliefs and expectations, often unconscious of their “confirmation bias” (Nickerson 1998). Not only are people subject to this and other cognitive biases (Kahneman 2011), of which they are typically unaware, but it may be counter-productive for one to make oneself aware of them and try consciously to counteract them or to counteract social biases such as racial or sexual stereotypes (Kenyon & Beaulac 2014). It is helpful to be aware of these facts and of the superior effectiveness of blocking the operation of biases—for example, by making an immediate record of one’s observations, refraining from forming a preliminary explanatory hypothesis, blind refereeing, double-blind randomized trials, and blind grading of students’ work. It is also helpful to be aware of the prevalence of “noise” (unwanted unsystematic variability of judgments), of how to detect noise (through a noise audit), and of how to reduce noise: make accuracy the goal, think statistically, break a process of arriving at a judgment into independent tasks, resist premature intuitions, in a group get independent judgments first, favour comparative judgments and scales (Kahneman, Sibony, & Sunstein 2021). It is helpful as well to be aware of the concept of “bounded rationality” in decision-making and of the related distinction between “satisficing” and optimizing (Simon 1956; Gigerenzer 2001).

Critical thinking about an issue requires substantive knowledge of the domain to which the issue belongs. Critical thinking abilities are not a magic elixir that can be applied to any issue whatever by somebody who has no knowledge of the facts relevant to exploring that issue. For example, the student in Bubbles needed to know that gases do not penetrate solid objects like a glass, that air expands when heated, that the volume of an enclosed gas varies directly with its temperature and inversely with its pressure, and that hot objects will spontaneously cool down to the ambient temperature of their surroundings unless kept hot by insulation or a source of heat. Critical thinkers thus need a rich fund of subject-matter knowledge relevant to the variety of situations they encounter. This fact is recognized in the inclusion among critical thinking dispositions of a concern to become and remain generally well informed.

Experimental educational interventions, with control groups, have shown that education can improve critical thinking skills and dispositions, as measured by standardized tests. For information about these tests, see the Supplement on Assessment .

What educational methods are most effective at developing the dispositions, abilities and knowledge of a critical thinker? In a comprehensive meta-analysis of experimental and quasi-experimental studies of strategies for teaching students to think critically, Abrami et al. (2015) found that dialogue, anchored instruction, and mentoring each increased the effectiveness of the educational intervention, and that they were most effective when combined. They also found that in these studies a combination of separate instruction in critical thinking with subject-matter instruction in which students are encouraged to think critically was more effective than either by itself. However, the difference was not statistically significant; that is, it might have arisen by chance.

Most of these studies lack the longitudinal follow-up required to determine whether the observed differential improvements in critical thinking abilities or dispositions continue over time, for example until high school or college graduation. For details on studies of methods of developing critical thinking skills and dispositions, see the Supplement on Educational Methods .

12. Controversies

Scholars have denied the generalizability of critical thinking abilities across subject domains, have alleged bias in critical thinking theory and pedagogy, and have investigated the relationship of critical thinking to other kinds of thinking.

McPeck (1981) attacked the thinking skills movement of the 1970s, including the critical thinking movement. He argued that there are no general thinking skills, since thinking is always thinking about some subject-matter. It is futile, he claimed, for schools and colleges to teach thinking as if it were a separate subject. Rather, teachers should lead their pupils to become autonomous thinkers by teaching school subjects in a way that brings out their cognitive structure and that encourages and rewards discussion and argument. As some of his critics (e.g., Paul 1985; Siegel 1985) pointed out, McPeck’s central argument needs elaboration, since it has obvious counter-examples in writing and speaking, for which (up to a certain level of complexity) there are teachable general abilities even though they are always about some subject-matter. To make his argument convincing, McPeck needs to explain how thinking differs from writing and speaking in a way that does not permit useful abstraction of its components from the subject-matters with which it deals. He has not done so. Nevertheless, his position that the dispositions and abilities of a critical thinker are best developed in the context of subject-matter instruction is shared by many theorists of critical thinking, including Dewey (1910, 1933), Glaser (1941), Passmore (1980), Weinstein (1990), Bailin et al. (1999b), and Willingham (2019).

McPeck’s challenge prompted reflection on the extent to which critical thinking is subject-specific. McPeck argued for a strong subject-specificity thesis, according to which it is a conceptual truth that all critical thinking abilities are specific to a subject. (He did not however extend his subject-specificity thesis to critical thinking dispositions. In particular, he took the disposition to suspend judgment in situations of cognitive dissonance to be a general disposition.) Conceptual subject-specificity is subject to obvious counter-examples, such as the general ability to recognize confusion of necessary and sufficient conditions. A more modest thesis, also endorsed by McPeck, is epistemological subject-specificity, according to which the norms of good thinking vary from one field to another. Epistemological subject-specificity clearly holds to a certain extent; for example, the principles in accordance with which one solves a differential equation are quite different from the principles in accordance with which one determines whether a painting is a genuine Picasso. But the thesis suffers, as Ennis (1989) points out, from vagueness of the concept of a field or subject and from the obvious existence of inter-field principles, however broadly the concept of a field is construed. For example, the principles of hypothetico-deductive reasoning hold for all the varied fields in which such reasoning occurs. A third kind of subject-specificity is empirical subject-specificity, according to which as a matter of empirically observable fact a person with the abilities and dispositions of a critical thinker in one area of investigation will not necessarily have them in another area of investigation.

The thesis of empirical subject-specificity raises the general problem of transfer. If critical thinking abilities and dispositions have to be developed independently in each school subject, how are they of any use in dealing with the problems of everyday life and the political and social issues of contemporary society, most of which do not fit into the framework of a traditional school subject? Proponents of empirical subject-specificity tend to argue that transfer is more likely to occur if there is critical thinking instruction in a variety of domains, with explicit attention to dispositions and abilities that cut across domains. But evidence for this claim is scanty. There is a need for well-designed empirical studies that investigate the conditions that make transfer more likely.

It is common ground in debates about the generality or subject-specificity of critical thinking dispositions and abilities that critical thinking about any topic requires background knowledge about the topic. For example, the most sophisticated understanding of the principles of hypothetico-deductive reasoning is of no help unless accompanied by some knowledge of what might be plausible explanations of some phenomenon under investigation.

Critics have objected to bias in the theory, pedagogy and practice of critical thinking. Commentators (e.g., Alston 1995; Ennis 1998) have noted that anyone who takes a position has a bias in the neutral sense of being inclined in one direction rather than others. The critics, however, are objecting to bias in the pejorative sense of an unjustified favoring of certain ways of knowing over others, frequently alleging that the unjustly favoured ways are those of a dominant sex or culture (Bailin 1995). These ways favour:

  • reinforcement of egocentric and sociocentric biases over dialectical engagement with opposing world-views (Paul 1981, 1984; Warren 1998)
  • distancing from the object of inquiry over closeness to it (Martin 1992; Thayer-Bacon 1992)
  • indifference to the situation of others over care for them (Martin 1992)
  • orientation to thought over orientation to action (Martin 1992)
  • being reasonable over caring to understand people’s ideas (Thayer-Bacon 1993)
  • being neutral and objective over being embodied and situated (Thayer-Bacon 1995a)
  • doubting over believing (Thayer-Bacon 1995b)
  • reason over emotion, imagination and intuition (Thayer-Bacon 2000)
  • solitary thinking over collaborative thinking (Thayer-Bacon 2000)
  • written and spoken assignments over other forms of expression (Alston 2001)
  • attention to written and spoken communications over attention to human problems (Alston 2001)
  • winning debates in the public sphere over making and understanding meaning (Alston 2001)

A common thread in this smorgasbord of accusations is dissatisfaction with focusing on the logical analysis and evaluation of reasoning and arguments. While these authors acknowledge that such analysis and evaluation is part of critical thinking and should be part of its conceptualization and pedagogy, they insist that it is only a part. Paul (1981), for example, bemoans the tendency of atomistic teaching of methods of analyzing and evaluating arguments to turn students into more able sophists, adept at finding fault with positions and arguments with which they disagree but even more entrenched in the egocentric and sociocentric biases with which they began. Martin (1992) and Thayer-Bacon (1992) cite with approval the self-reported intimacy with their subject-matter of leading researchers in biology and medicine, an intimacy that conflicts with the distancing allegedly recommended in standard conceptions and pedagogy of critical thinking. Thayer-Bacon (2000) contrasts the embodied and socially embedded learning of her elementary school students in a Montessori school, who used their imagination, intuition and emotions as well as their reason, with conceptions of critical thinking as

thinking that is used to critique arguments, offer justifications, and make judgments about what are the good reasons, or the right answers. (Thayer-Bacon 2000: 127–128)

Alston (2001) reports that her students in a women’s studies class were able to see the flaws in the Cinderella myth that pervades much romantic fiction but in their own romantic relationships still acted as if all failures were the woman’s fault and still accepted the notions of love at first sight and living happily ever after. Students, she writes, should

be able to connect their intellectual critique to a more affective, somatic, and ethical account of making risky choices that have sexist, racist, classist, familial, sexual, or other consequences for themselves and those both near and far… critical thinking that reads arguments, texts, or practices merely on the surface without connections to feeling/desiring/doing or action lacks an ethical depth that should infuse the difference between mere cognitive activity and something we want to call critical thinking. (Alston 2001: 34)

Some critics portray such biases as unfair to women. Thayer-Bacon (1992), for example, has charged modern critical thinking theory with being sexist, on the ground that it separates the self from the object and causes one to lose touch with one’s inner voice, and thus stigmatizes women, who (she asserts) link self to object and listen to their inner voice. Her charge does not imply that women as a group are on average less able than men to analyze and evaluate arguments. Facione (1990c) found no difference by sex in performance on his California Critical Thinking Skills Test. Kuhn (1991: 280–281) found no difference by sex in either the disposition or the competence to engage in argumentative thinking.

The critics propose a variety of remedies for the biases that they allege. In general, they do not propose to eliminate or downplay critical thinking as an educational goal. Rather, they propose to conceptualize critical thinking differently and to change its pedagogy accordingly. Their pedagogical proposals arise logically from their objections. They can be summarized as follows:

  • Focus on argument networks with dialectical exchanges reflecting contesting points of view rather than on atomic arguments, so as to develop “strong sense” critical thinking that transcends egocentric and sociocentric biases (Paul 1981, 1984).
  • Foster closeness to the subject-matter and feeling connected to others in order to inform a humane democracy (Martin 1992).
  • Develop “constructive thinking” as a social activity in a community of physically embodied and socially embedded inquirers with personal voices who value not only reason but also imagination, intuition and emotion (Thayer-Bacon 2000).
  • In developing critical thinking in school subjects, treat as important neither skills nor dispositions but opening worlds of meaning (Alston 2001).
  • Attend to the development of critical thinking dispositions as well as skills, and adopt the “critical pedagogy” practised and advocated by Freire (1968 [1970]) and hooks (1994) (Dalgleish, Girard, & Davies 2017).

A common thread in these proposals is treatment of critical thinking as a social, interactive, personally engaged activity like that of a quilting bee or a barn-raising (Thayer-Bacon 2000) rather than as an individual, solitary, distanced activity symbolized by Rodin’s The Thinker . One can get a vivid description of education with the former type of goal from the writings of bell hooks (1994, 2010). Critical thinking for her is open-minded dialectical exchange across opposing standpoints and from multiple perspectives, a conception similar to Paul’s “strong sense” critical thinking (Paul 1981). She abandons the structure of domination in the traditional classroom. In an introductory course on black women writers, for example, she assigns students to write an autobiographical paragraph about an early racial memory, then to read it aloud as the others listen, thus affirming the uniqueness and value of each voice and creating a communal awareness of the diversity of the group’s experiences (hooks 1994: 84). Her “engaged pedagogy” is thus similar to the “freedom under guidance” implemented in John Dewey’s Laboratory School of Chicago in the late 1890s and early 1900s. It incorporates the dialogue, anchored instruction, and mentoring that Abrami (2015) found to be most effective in improving critical thinking skills and dispositions.

What is the relationship of critical thinking to problem solving, decision-making, higher-order thinking, creative thinking, and other recognized types of thinking? One’s answer to this question obviously depends on how one defines the terms used in the question. If critical thinking is conceived broadly to cover any careful thinking about any topic for any purpose, then problem solving and decision making will be kinds of critical thinking, if they are done carefully. Historically, ‘critical thinking’ and ‘problem solving’ were two names for the same thing. If critical thinking is conceived more narrowly as consisting solely of appraisal of intellectual products, then it will be disjoint with problem solving and decision making, which are constructive.

Bloom’s taxonomy of educational objectives used the phrase “intellectual abilities and skills” for what had been labeled “critical thinking” by some, “reflective thinking” by Dewey and others, and “problem solving” by still others (Bloom et al. 1956: 38). Thus, the so-called “higher-order thinking skills” at the taxonomy’s top levels of analysis, synthesis and evaluation are just critical thinking skills, although they do not come with general criteria for their assessment (Ennis 1981b). The revised version of Bloom’s taxonomy (Anderson et al. 2001) likewise treats critical thinking as cutting across those types of cognitive process that involve more than remembering (Anderson et al. 2001: 269–270). For details, see the Supplement on History .

As to creative thinking, it overlaps with critical thinking (Bailin 1987, 1988). Thinking about the explanation of some phenomenon or event, as in Ferryboat , requires creative imagination in constructing plausible explanatory hypotheses. Likewise, thinking about a policy question, as in Candidate , requires creativity in coming up with options. Conversely, creativity in any field needs to be balanced by critical appraisal of the draft painting or novel or mathematical theory.

  • Abrami, Philip C., Robert M. Bernard, Eugene Borokhovski, David I. Waddington, C. Anne Wade, and Tonje Person, 2015, “Strategies for Teaching Students to Think Critically: A Meta-analysis”, Review of Educational Research , 85(2): 275–314. doi:10.3102/0034654314551063
  • Aikin, Wilford M., 1942, The Story of the Eight-year Study, with Conclusions and Recommendations , Volume I of Adventure in American Education , New York and London: Harper & Brothers. [ Aikin 1942 available online ]
  • Alston, Kal, 1995, “Begging the Question: Is Critical Thinking Biased?”, Educational Theory , 45(2): 225–233. doi:10.1111/j.1741-5446.1995.00225.x
  • –––, 2001, “Re/Thinking Critical Thinking: The Seductions of Everyday Life”, Studies in Philosophy and Education , 20(1): 27–40. doi:10.1023/A:1005247128053
  • American Educational Research Association, 2014, Standards for Educational and Psychological Testing / American Educational Research Association, American Psychological Association, National Council on Measurement in Education , Washington, DC: American Educational Research Association.
  • Anderson, Lorin W., David R. Krathwohl, Peter W. Airiasian, Kathleen A. Cruikshank, Richard E. Mayer, Paul R. Pintrich, James Raths, and Merlin C. Wittrock, 2001, A Taxonomy for Learning, Teaching and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives , New York: Longman, complete edition.
  • Bailin, Sharon, 1987, “Critical and Creative Thinking”, Informal Logic , 9(1): 23–30. [ Bailin 1987 available online ]
  • –––, 1988, Achieving Extraordinary Ends: An Essay on Creativity , Dordrecht: Kluwer. doi:10.1007/978-94-009-2780-3
  • –––, 1995, “Is Critical Thinking Biased? Clarifications and Implications”, Educational Theory , 45(2): 191–197. doi:10.1111/j.1741-5446.1995.00191.x
  • Bailin, Sharon and Mark Battersby, 2009, “Inquiry: A Dialectical Approach to Teaching Critical Thinking”, in Juho Ritola (ed.), Argument Cultures: Proceedings of OSSA 09 , CD-ROM (pp. 1–10), Windsor, ON: OSSA. [ Bailin & Battersby 2009 available online ]
  • –––, 2016a, “Fostering the Virtues of Inquiry”, Topoi , 35(2): 367–374. doi:10.1007/s11245-015-9307-6
  • –––, 2016b, Reason in the Balance: An Inquiry Approach to Critical Thinking , Indianapolis: Hackett, 2nd edition.
  • –––, 2021, “Inquiry: Teaching for Reasoned Judgment”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 31–46. doi: 10.1163/9789004444591_003
  • Bailin, Sharon, Roland Case, Jerrold R. Coombs, and Leroi B. Daniels, 1999a, “Common Misconceptions of Critical Thinking”, Journal of Curriculum Studies , 31(3): 269–283. doi:10.1080/002202799183124
  • –––, 1999b, “Conceptualizing Critical Thinking”, Journal of Curriculum Studies , 31(3): 285–302. doi:10.1080/002202799183133
  • Blair, J. Anthony, 2021, Studies in Critical Thinking , Windsor, ON: Windsor Studies in Argumentation, 2nd edition. [Available online at https://windsor.scholarsportal.info/omp/index.php/wsia/catalog/book/106]
  • Berman, Alan M., Seth J. Schwartz, William M. Kurtines, and Steven L. Berman, 2001, “The Process of Exploration in Identity Formation: The Role of Style and Competence”, Journal of Adolescence , 24(4): 513–528. doi:10.1006/jado.2001.0386
  • Black, Beth (ed.), 2012, An A to Z of Critical Thinking , London: Continuum International Publishing Group.
  • Bloom, Benjamin Samuel, Max D. Engelhart, Edward J. Furst, Walter H. Hill, and David R. Krathwohl, 1956, Taxonomy of Educational Objectives. Handbook I: Cognitive Domain , New York: David McKay.
  • Boardman, Frank, Nancy M. Cavender, and Howard Kahane, 2018, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Boston: Cengage, 13th edition.
  • Browne, M. Neil and Stuart M. Keeley, 2018, Asking the Right Questions: A Guide to Critical Thinking , Hoboken, NJ: Pearson, 12th edition.
  • Center for Assessment & Improvement of Learning, 2017, Critical Thinking Assessment Test , Cookeville, TN: Tennessee Technological University.
  • Cleghorn, Paul. 2021. “Critical Thinking in the Elementary School: Practical Guidance for Building a Culture of Thinking”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessmen t, Leiden: Brill, pp. 150–167. doi: 10.1163/9789004444591_010
  • Cohen, Jacob, 1988, Statistical Power Analysis for the Behavioral Sciences , Hillsdale, NJ: Lawrence Erlbaum Associates, 2nd edition.
  • College Board, 1983, Academic Preparation for College. What Students Need to Know and Be Able to Do , New York: College Entrance Examination Board, ERIC document ED232517.
  • Commission on the Relation of School and College of the Progressive Education Association, 1943, Thirty Schools Tell Their Story , Volume V of Adventure in American Education , New York and London: Harper & Brothers.
  • Council for Aid to Education, 2017, CLA+ Student Guide . Available at http://cae.org/images/uploads/pdf/CLA_Student_Guide_Institution.pdf ; last accessed 2022 07 16.
  • Dalgleish, Adam, Patrick Girard, and Maree Davies, 2017, “Critical Thinking, Bias and Feminist Philosophy: Building a Better Framework through Collaboration”, Informal Logic , 37(4): 351–369. [ Dalgleish et al. available online ]
  • Dewey, John, 1910, How We Think , Boston: D.C. Heath. [ Dewey 1910 available online ]
  • –––, 1916, Democracy and Education: An Introduction to the Philosophy of Education , New York: Macmillan.
  • –––, 1933, How We Think: A Restatement of the Relation of Reflective Thinking to the Educative Process , Lexington, MA: D.C. Heath.
  • –––, 1936, “The Theory of the Chicago Experiment”, Appendix II of Mayhew & Edwards 1936: 463–477.
  • –––, 1938, Logic: The Theory of Inquiry , New York: Henry Holt and Company.
  • Dominguez, Caroline (coord.), 2018a, A European Collection of the Critical Thinking Skills and Dispositions Needed in Different Professional Fields for the 21st Century , Vila Real, Portugal: UTAD. Available at http://bit.ly/CRITHINKEDUO1 ; last accessed 2022 07 16.
  • ––– (coord.), 2018b, A European Review on Critical Thinking Educational Practices in Higher Education Institutions , Vila Real: UTAD. Available at http://bit.ly/CRITHINKEDUO2 ; last accessed 2022 07 16.
  • ––– (coord.), 2018c, The CRITHINKEDU European Course on Critical Thinking Education for University Teachers: From Conception to Delivery , Vila Real: UTAD. Available at http:/bit.ly/CRITHINKEDU03; last accessed 2022 07 16.
  • Dominguez Caroline and Rita Payan-Carreira (eds.), 2019, Promoting Critical Thinking in European Higher Education Institutions: Towards an Educational Protocol , Vila Real: UTAD. Available at http:/bit.ly/CRITHINKEDU04; last accessed 2022 07 16.
  • Ennis, Robert H., 1958, “An Appraisal of the Watson-Glaser Critical Thinking Appraisal”, The Journal of Educational Research , 52(4): 155–158. doi:10.1080/00220671.1958.10882558
  • –––, 1962, “A Concept of Critical Thinking: A Proposed Basis for Research on the Teaching and Evaluation of Critical Thinking Ability”, Harvard Educational Review , 32(1): 81–111.
  • –––, 1981a, “A Conception of Deductive Logical Competence”, Teaching Philosophy , 4(3/4): 337–385. doi:10.5840/teachphil198143/429
  • –––, 1981b, “Eight Fallacies in Bloom’s Taxonomy”, in C. J. B. Macmillan (ed.), Philosophy of Education 1980: Proceedings of the Thirty-seventh Annual Meeting of the Philosophy of Education Society , Bloomington, IL: Philosophy of Education Society, pp. 269–273.
  • –––, 1984, “Problems in Testing Informal Logic, Critical Thinking, Reasoning Ability”, Informal Logic , 6(1): 3–9. [ Ennis 1984 available online ]
  • –––, 1987, “A Taxonomy of Critical Thinking Dispositions and Abilities”, in Joan Boykoff Baron and Robert J. Sternberg (eds.), Teaching Thinking Skills: Theory and Practice , New York: W. H. Freeman, pp. 9–26.
  • –––, 1989, “Critical Thinking and Subject Specificity: Clarification and Needed Research”, Educational Researcher , 18(3): 4–10. doi:10.3102/0013189X018003004
  • –––, 1991, “Critical Thinking: A Streamlined Conception”, Teaching Philosophy , 14(1): 5–24. doi:10.5840/teachphil19911412
  • –––, 1996, “Critical Thinking Dispositions: Their Nature and Assessability”, Informal Logic , 18(2–3): 165–182. [ Ennis 1996 available online ]
  • –––, 1998, “Is Critical Thinking Culturally Biased?”, Teaching Philosophy , 21(1): 15–33. doi:10.5840/teachphil19982113
  • –––, 2011, “Critical Thinking: Reflection and Perspective Part I”, Inquiry: Critical Thinking across the Disciplines , 26(1): 4–18. doi:10.5840/inquiryctnews20112613
  • –––, 2013, “Critical Thinking across the Curriculum: The Wisdom CTAC Program”, Inquiry: Critical Thinking across the Disciplines , 28(2): 25–45. doi:10.5840/inquiryct20132828
  • –––, 2016, “Definition: A Three-Dimensional Analysis with Bearing on Key Concepts”, in Patrick Bondy and Laura Benacquista (eds.), Argumentation, Objectivity, and Bias: Proceedings of the 11th International Conference of the Ontario Society for the Study of Argumentation (OSSA), 18–21 May 2016 , Windsor, ON: OSSA, pp. 1–19. Available at http://scholar.uwindsor.ca/ossaarchive/OSSA11/papersandcommentaries/105 ; last accessed 2022 07 16.
  • –––, 2018, “Critical Thinking Across the Curriculum: A Vision”, Topoi , 37(1): 165–184. doi:10.1007/s11245-016-9401-4
  • Ennis, Robert H., and Jason Millman, 1971, Manual for Cornell Critical Thinking Test, Level X, and Cornell Critical Thinking Test, Level Z , Urbana, IL: Critical Thinking Project, University of Illinois.
  • Ennis, Robert H., Jason Millman, and Thomas Norbert Tomko, 1985, Cornell Critical Thinking Tests Level X & Level Z: Manual , Pacific Grove, CA: Midwest Publication, 3rd edition.
  • –––, 2005, Cornell Critical Thinking Tests Level X & Level Z: Manual , Seaside, CA: Critical Thinking Company, 5th edition.
  • Ennis, Robert H. and Eric Weir, 1985, The Ennis-Weir Critical Thinking Essay Test: Test, Manual, Criteria, Scoring Sheet: An Instrument for Teaching and Testing , Pacific Grove, CA: Midwest Publications.
  • Facione, Peter A., 1990a, Critical Thinking: A Statement of Expert Consensus for Purposes of Educational Assessment and Instruction , Research Findings and Recommendations Prepared for the Committee on Pre-College Philosophy of the American Philosophical Association, ERIC Document ED315423.
  • –––, 1990b, California Critical Thinking Skills Test, CCTST – Form A , Millbrae, CA: The California Academic Press.
  • –––, 1990c, The California Critical Thinking Skills Test--College Level. Technical Report #3. Gender, Ethnicity, Major, CT Self-Esteem, and the CCTST , ERIC Document ED326584.
  • –––, 1992, California Critical Thinking Skills Test: CCTST – Form B, Millbrae, CA: The California Academic Press.
  • –––, 2000, “The Disposition Toward Critical Thinking: Its Character, Measurement, and Relationship to Critical Thinking Skill”, Informal Logic , 20(1): 61–84. [ Facione 2000 available online ]
  • Facione, Peter A. and Noreen C. Facione, 1992, CCTDI: A Disposition Inventory , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Noreen C. Facione, and Carol Ann F. Giancarlo, 2001, California Critical Thinking Disposition Inventory: CCTDI: Inventory Manual , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Carol A. Sánchez, and Noreen C. Facione, 1994, Are College Students Disposed to Think? , Millbrae, CA: The California Academic Press. ERIC Document ED368311.
  • Fisher, Alec, and Michael Scriven, 1997, Critical Thinking: Its Definition and Assessment , Norwich: Centre for Research in Critical Thinking, University of East Anglia.
  • Freire, Paulo, 1968 [1970], Pedagogia do Oprimido . Translated as Pedagogy of the Oppressed , Myra Bergman Ramos (trans.), New York: Continuum, 1970.
  • Gigerenzer, Gerd, 2001, “The Adaptive Toolbox”, in Gerd Gigerenzer and Reinhard Selten (eds.), Bounded Rationality: The Adaptive Toolbox , Cambridge, MA: MIT Press, pp. 37–50.
  • Glaser, Edward Maynard, 1941, An Experiment in the Development of Critical Thinking , New York: Bureau of Publications, Teachers College, Columbia University.
  • Groarke, Leo A. and Christopher W. Tindale, 2012, Good Reasoning Matters! A Constructive Approach to Critical Thinking , Don Mills, ON: Oxford University Press, 5th edition.
  • Halpern, Diane F., 1998, “Teaching Critical Thinking for Transfer Across Domains: Disposition, Skills, Structure Training, and Metacognitive Monitoring”, American Psychologist , 53(4): 449–455. doi:10.1037/0003-066X.53.4.449
  • –––, 2016, Manual: Halpern Critical Thinking Assessment , Mödling, Austria: Schuhfried. Available at https://pdfcoffee.com/hcta-test-manual-pdf-free.html; last accessed 2022 07 16.
  • Hamby, Benjamin, 2014, The Virtues of Critical Thinkers , Doctoral dissertation, Philosophy, McMaster University. [ Hamby 2014 available online ]
  • –––, 2015, “Willingness to Inquire: The Cardinal Critical Thinking Virtue”, in Martin Davies and Ronald Barnett (eds.), The Palgrave Handbook of Critical Thinking in Higher Education , New York: Palgrave Macmillan, pp. 77–87.
  • Haran, Uriel, Ilana Ritov, and Barbara A. Mellers, 2013, “The Role of Actively Open-minded Thinking in Information Acquisition, Accuracy, and Calibration”, Judgment and Decision Making , 8(3): 188–201.
  • Hatcher, Donald and Kevin Possin, 2021, “Commentary: Thinking Critically about Critical Thinking Assessment”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 298–322. doi: 10.1163/9789004444591_017
  • Haynes, Ada, Elizabeth Lisic, Kevin Harris, Katie Leming, Kyle Shanks, and Barry Stein, 2015, “Using the Critical Thinking Assessment Test (CAT) as a Model for Designing Within-Course Assessments: Changing How Faculty Assess Student Learning”, Inquiry: Critical Thinking Across the Disciplines , 30(3): 38–48. doi:10.5840/inquiryct201530316
  • Haynes, Ada and Barry Stein, 2021, “Observations from a Long-Term Effort to Assess and Improve Critical Thinking”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 231–254. doi: 10.1163/9789004444591_014
  • Hiner, Amanda L. 2021. “Equipping Students for Success in College and Beyond: Placing Critical Thinking Instruction at the Heart of a General Education Program”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 188–208. doi: 10.1163/9789004444591_012
  • Hitchcock, David, 2017, “Critical Thinking as an Educational Ideal”, in his On Reasoning and Argument: Essays in Informal Logic and on Critical Thinking , Dordrecht: Springer, pp. 477–497. doi:10.1007/978-3-319-53562-3_30
  • –––, 2021, “Seven Philosophical Implications of Critical Thinking: Themes, Variations, Implications”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 9–30. doi: 10.1163/9789004444591_002
  • hooks, bell, 1994, Teaching to Transgress: Education as the Practice of Freedom , New York and London: Routledge.
  • –––, 2010, Teaching Critical Thinking: Practical Wisdom , New York and London: Routledge.
  • Johnson, Ralph H., 1992, “The Problem of Defining Critical Thinking”, in Stephen P, Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 38–53.
  • Kahane, Howard, 1971, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Belmont, CA: Wadsworth.
  • Kahneman, Daniel, 2011, Thinking, Fast and Slow , New York: Farrar, Straus and Giroux.
  • Kahneman, Daniel, Olivier Sibony, & Cass R. Sunstein, 2021, Noise: A Flaw in Human Judgment , New York: Little, Brown Spark.
  • Kenyon, Tim, and Guillaume Beaulac, 2014, “Critical Thinking Education and Debasing”, Informal Logic , 34(4): 341–363. [ Kenyon & Beaulac 2014 available online ]
  • Krathwohl, David R., Benjamin S. Bloom, and Bertram B. Masia, 1964, Taxonomy of Educational Objectives, Handbook II: Affective Domain , New York: David McKay.
  • Kuhn, Deanna, 1991, The Skills of Argument , New York: Cambridge University Press. doi:10.1017/CBO9780511571350
  • –––, 2019, “Critical Thinking as Discourse”, Human Development, 62 (3): 146–164. doi:10.1159/000500171
  • Lipman, Matthew, 1987, “Critical Thinking–What Can It Be?”, Analytic Teaching , 8(1): 5–12. [ Lipman 1987 available online ]
  • –––, 2003, Thinking in Education , Cambridge: Cambridge University Press, 2nd edition.
  • Loftus, Elizabeth F., 2017, “Eavesdropping on Memory”, Annual Review of Psychology , 68: 1–18. doi:10.1146/annurev-psych-010416-044138
  • Makaiau, Amber Strong, 2021, “The Good Thinker’s Tool Kit: How to Engage Critical Thinking and Reasoning in Secondary Education”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 168–187. doi: 10.1163/9789004444591_011
  • Martin, Jane Roland, 1992, “Critical Thinking for a Humane World”, in Stephen P. Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 163–180.
  • Mayhew, Katherine Camp, and Anna Camp Edwards, 1936, The Dewey School: The Laboratory School of the University of Chicago, 1896–1903 , New York: Appleton-Century. [ Mayhew & Edwards 1936 available online ]
  • McPeck, John E., 1981, Critical Thinking and Education , New York: St. Martin’s Press.
  • Moore, Brooke Noel and Richard Parker, 2020, Critical Thinking , New York: McGraw-Hill, 13th edition.
  • Nickerson, Raymond S., 1998, “Confirmation Bias: A Ubiquitous Phenomenon in Many Guises”, Review of General Psychology , 2(2): 175–220. doi:10.1037/1089-2680.2.2.175
  • Nieto, Ana Maria, and Jorge Valenzuela, 2012, “A Study of the Internal Structure of Critical Thinking Dispositions”, Inquiry: Critical Thinking across the Disciplines , 27(1): 31–38. doi:10.5840/inquiryct20122713
  • Norris, Stephen P., 1985, “Controlling for Background Beliefs When Developing Multiple-choice Critical Thinking Tests”, Educational Measurement: Issues and Practice , 7(3): 5–11. doi:10.1111/j.1745-3992.1988.tb00437.x
  • Norris, Stephen P. and Robert H. Ennis, 1989, Evaluating Critical Thinking (The Practitioners’ Guide to Teaching Thinking Series), Pacific Grove, CA: Midwest Publications.
  • Norris, Stephen P. and Ruth Elizabeth King, 1983, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1984, The Design of a Critical Thinking Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland. ERIC Document ED260083.
  • –––, 1985, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1990a, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • –––, 1990b, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • OCR [Oxford, Cambridge and RSA Examinations], 2011, AS/A Level GCE: Critical Thinking – H052, H452 , Cambridge: OCR. Past papers available at https://pastpapers.co/ocr/?dir=A-Level/Critical-Thinking-H052-H452; last accessed 2022 07 16.
  • Ontario Ministry of Education, 2013, The Ontario Curriculum Grades 9 to 12: Social Sciences and Humanities . Available at http://www.edu.gov.on.ca/eng/curriculum/secondary/ssciences9to122013.pdf ; last accessed 2022 07 16.
  • Passmore, John Arthur, 1980, The Philosophy of Teaching , London: Duckworth.
  • Paul, Richard W., 1981, “Teaching Critical Thinking in the ‘Strong’ Sense: A Focus on Self-Deception, World Views, and a Dialectical Mode of Analysis”, Informal Logic , 4(2): 2–7. [ Paul 1981 available online ]
  • –––, 1984, “Critical Thinking: Fundamental to Education for a Free Society”, Educational Leadership , 42(1): 4–14.
  • –––, 1985, “McPeck’s Mistakes”, Informal Logic , 7(1): 35–43. [ Paul 1985 available online ]
  • Paul, Richard W. and Linda Elder, 2006, The Miniature Guide to Critical Thinking: Concepts and Tools , Dillon Beach, CA: Foundation for Critical Thinking, 4th edition.
  • Payette, Patricia, and Edna Ross, 2016, “Making a Campus-Wide Commitment to Critical Thinking: Insights and Promising Practices Utilizing the Paul-Elder Approach at the University of Louisville”, Inquiry: Critical Thinking Across the Disciplines , 31(1): 98–110. doi:10.5840/inquiryct20163118
  • Possin, Kevin, 2008, “A Field Guide to Critical-Thinking Assessment”, Teaching Philosophy , 31(3): 201–228. doi:10.5840/teachphil200831324
  • –––, 2013a, “Some Problems with the Halpern Critical Thinking Assessment (HCTA) Test”, Inquiry: Critical Thinking across the Disciplines , 28(3): 4–12. doi:10.5840/inquiryct201328313
  • –––, 2013b, “A Serious Flaw in the Collegiate Learning Assessment (CLA) Test”, Informal Logic , 33(3): 390–405. [ Possin 2013b available online ]
  • –––, 2013c, “A Fatal Flaw in the Collegiate Learning Assessment Test”, Assessment Update , 25 (1): 8–12.
  • –––, 2014, “Critique of the Watson-Glaser Critical Thinking Appraisal Test: The More You Know, the Lower Your Score”, Informal Logic , 34(4): 393–416. [ Possin 2014 available online ]
  • –––, 2020, “CAT Scan: A Critical Review of the Critical-Thinking Assessment Test”, Informal Logic , 40 (3): 489–508. [Available online at https://informallogic.ca/index.php/informal_logic/article/view/6243]
  • Rawls, John, 1971, A Theory of Justice , Cambridge, MA: Harvard University Press.
  • Rear, David, 2019, “One Size Fits All? The Limitations of Standardised Assessment in Critical Thinking”, Assessment & Evaluation in Higher Education , 44(5): 664–675. doi: 10.1080/02602938.2018.1526255
  • Rousseau, Jean-Jacques, 1762, Émile , Amsterdam: Jean Néaulme.
  • Scheffler, Israel, 1960, The Language of Education , Springfield, IL: Charles C. Thomas.
  • Scriven, Michael, and Richard W. Paul, 1987, Defining Critical Thinking , Draft statement written for the National Council for Excellence in Critical Thinking Instruction. Available at http://www.criticalthinking.org/pages/defining-critical-thinking/766 ; last accessed 2022 07 16.
  • Sheffield, Clarence Burton Jr., 2018, “Promoting Critical Thinking in Higher Education: My Experiences as the Inaugural Eugene H. Fram Chair in Applied Critical Thinking at Rochester Institute of Technology”, Topoi , 37(1): 155–163. doi:10.1007/s11245-016-9392-1
  • Siegel, Harvey, 1985, “McPeck, Informal Logic and the Nature of Critical Thinking”, in David Nyberg (ed.), Philosophy of Education 1985: Proceedings of the Forty-First Annual Meeting of the Philosophy of Education Society , Normal, IL: Philosophy of Education Society, pp. 61–72.
  • –––, 1988, Educating Reason: Rationality, Critical Thinking, and Education , New York: Routledge.
  • –––, 1999, “What (Good) Are Thinking Dispositions?”, Educational Theory , 49(2): 207–221. doi:10.1111/j.1741-5446.1999.00207.x
  • Simon, Herbert A., 1956, “Rational Choice and the Structure of the Environment”, Psychological Review , 63(2): 129–138. doi: 10.1037/h0042769
  • Simpson, Elizabeth, 1966–67, “The Classification of Educational Objectives: Psychomotor Domain”, Illinois Teacher of Home Economics , 10(4): 110–144, ERIC document ED0103613. [ Simpson 1966–67 available online ]
  • Skolverket, 2018, Curriculum for the Compulsory School, Preschool Class and School-age Educare , Stockholm: Skolverket, revised 2018. Available at https://www.skolverket.se/download/18.31c292d516e7445866a218f/1576654682907/pdf3984.pdf; last accessed 2022 07 15.
  • Smith, B. Othanel, 1953, “The Improvement of Critical Thinking”, Progressive Education , 30(5): 129–134.
  • Smith, Eugene Randolph, Ralph Winfred Tyler, and the Evaluation Staff, 1942, Appraising and Recording Student Progress , Volume III of Adventure in American Education , New York and London: Harper & Brothers.
  • Splitter, Laurance J., 1987, “Educational Reform through Philosophy for Children”, Thinking: The Journal of Philosophy for Children , 7(2): 32–39. doi:10.5840/thinking1987729
  • Stanovich Keith E., and Paula J. Stanovich, 2010, “A Framework for Critical Thinking, Rational Thinking, and Intelligence”, in David D. Preiss and Robert J. Sternberg (eds), Innovations in Educational Psychology: Perspectives on Learning, Teaching and Human Development , New York: Springer Publishing, pp 195–237.
  • Stanovich Keith E., Richard F. West, and Maggie E. Toplak, 2011, “Intelligence and Rationality”, in Robert J. Sternberg and Scott Barry Kaufman (eds.), Cambridge Handbook of Intelligence , Cambridge: Cambridge University Press, 3rd edition, pp. 784–826. doi:10.1017/CBO9780511977244.040
  • Tankersley, Karen, 2005, Literacy Strategies for Grades 4–12: Reinforcing the Threads of Reading , Alexandria, VA: Association for Supervision and Curriculum Development.
  • Thayer-Bacon, Barbara J., 1992, “Is Modern Critical Thinking Theory Sexist?”, Inquiry: Critical Thinking Across the Disciplines , 10(1): 3–7. doi:10.5840/inquiryctnews199210123
  • –––, 1993, “Caring and Its Relationship to Critical Thinking”, Educational Theory , 43(3): 323–340. doi:10.1111/j.1741-5446.1993.00323.x
  • –––, 1995a, “Constructive Thinking: Personal Voice”, Journal of Thought , 30(1): 55–70.
  • –––, 1995b, “Doubting and Believing: Both are Important for Critical Thinking”, Inquiry: Critical Thinking across the Disciplines , 15(2): 59–66. doi:10.5840/inquiryctnews199515226
  • –––, 2000, Transforming Critical Thinking: Thinking Constructively , New York: Teachers College Press.
  • Toulmin, Stephen Edelston, 1958, The Uses of Argument , Cambridge: Cambridge University Press.
  • Turri, John, Mark Alfano, and John Greco, 2017, “Virtue Epistemology”, in Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Winter 2017 Edition). URL = < https://plato.stanford.edu/archives/win2017/entries/epistemology-virtue/ >
  • Vincent-Lancrin, Stéphan, Carlos González-Sancho, Mathias Bouckaert, Federico de Luca, Meritxell Fernández-Barrerra, Gwénaël Jacotin, Joaquin Urgel, and Quentin Vidal, 2019, Fostering Students’ Creativity and Critical Thinking: What It Means in School. Educational Research and Innovation , Paris: OECD Publishing.
  • Warren, Karen J. 1988. “Critical Thinking and Feminism”, Informal Logic , 10(1): 31–44. [ Warren 1988 available online ]
  • Watson, Goodwin, and Edward M. Glaser, 1980a, Watson-Glaser Critical Thinking Appraisal, Form A , San Antonio, TX: Psychological Corporation.
  • –––, 1980b, Watson-Glaser Critical Thinking Appraisal: Forms A and B; Manual , San Antonio, TX: Psychological Corporation,
  • –––, 1994, Watson-Glaser Critical Thinking Appraisal, Form B , San Antonio, TX: Psychological Corporation.
  • Weinstein, Mark, 1990, “Towards a Research Agenda for Informal Logic and Critical Thinking”, Informal Logic , 12(3): 121–143. [ Weinstein 1990 available online ]
  • –––, 2013, Logic, Truth and Inquiry , London: College Publications.
  • Willingham, Daniel T., 2019, “How to Teach Critical Thinking”, Education: Future Frontiers , 1: 1–17. [Available online at https://prod65.education.nsw.gov.au/content/dam/main-education/teaching-and-learning/education-for-a-changing-world/media/documents/How-to-teach-critical-thinking-Willingham.pdf.]
  • Zagzebski, Linda Trinkaus, 1996, Virtues of the Mind: An Inquiry into the Nature of Virtue and the Ethical Foundations of Knowledge , Cambridge: Cambridge University Press. doi:10.1017/CBO9781139174763
How to cite this entry . Preview the PDF version of this entry at the Friends of the SEP Society . Look up topics and thinkers related to this entry at the Internet Philosophy Ontology Project (InPhO). Enhanced bibliography for this entry at PhilPapers , with links to its database.
  • Association for Informal Logic and Critical Thinking (AILACT)
  • Critical Thinking Across the European Higher Education Curricula (CRITHINKEDU)
  • Critical Thinking Definition, Instruction, and Assessment: A Rigorous Approach
  • Critical Thinking Research (RAIL)
  • Foundation for Critical Thinking
  • Insight Assessment
  • Partnership for 21st Century Learning (P21)
  • The Critical Thinking Consortium
  • The Nature of Critical Thinking: An Outline of Critical Thinking Dispositions and Abilities , by Robert H. Ennis

abilities | bias, implicit | children, philosophy for | civic education | decision-making capacity | Dewey, John | dispositions | education, philosophy of | epistemology: virtue | logic: informal

Copyright © 2022 by David Hitchcock < hitchckd @ mcmaster . ca >

  • Accessibility

Support SEP

Mirror sites.

View this site from another server:

  • Info about mirror sites

The Stanford Encyclopedia of Philosophy is copyright © 2024 by The Metaphysics Research Lab , Department of Philosophy, Stanford University

Library of Congress Catalog Data: ISSN 1095-5054

  • Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Don't Miss a Post! Subscribe

  • Guest Posts

Educators Technology

  • Educational AI
  • Edtech Tools
  • Edtech Apps
  • Teacher Resources
  • Special Education
  • Edtech for Kids
  • Buying Guides for Teachers

Educators Technology

Educators Technology

Innovative EdTech for teachers, educators, parents, and students

The 8 Elements of Critical Thinking

By Med Kharbach, PhD | Last Update: August 12, 2024

Elements of critical thinking are the topic of our blog post today!

Navigating our digitally saturated world feels like wading through an ocean of information. We’ve reached an unprecedented point in history where we’re drowning in data—accessible with just a tap or a click. The very tool that’s revolutionizing our access to knowledge is also becoming a double-edged sword.

On one hand, the democratization of knowledge is an incredible leap forward, comparable to groundbreaking inventions like fire, electricity, and the internet. But, there’s also a downside: the phenomenon of “infobesity,” or information overload. How do we navigate this ocean without drowning? The answer lies in harnessing the power of critical thinking, a multifaceted skill that’s more crucial now than ever.

In this post, we’re going to dig deep into the anatomy of critical thinking—what it is, why it matters, and how to hone this indispensable skill. Along the way, I’ll draw from established thinking taxonomies, scientific studies, and my own experiences as an educational researcher to guide us through. Let’s jump right in!

Elements of Critical Thinking

This visual is inspired by Elesapiens work

What is Critical Thinking?

I like to think of critical thinking as an analytic framework, a conceptual structure that weaves together a set of interconnected thinking skills and reasoning abilities. Critical thinking is therefore not a monolithic skill and certainly not a single cognitive ability. 

It is the ensemble of reasoning mechanisms that enable us to synthesize, analyze, process, and evaluate information. It is, as Stanford Encyclopedia of Philosophy defines it, a ‘careful goal-directed thinking’. 

The purpose of critical thinking is to inform our behaviours, actions, decisions and to “improve our ability to reason and generate strong arguments” (Hanscomb, 2016, p. 3). 

The word critical in critical thinking implies two things: First, it implies the existence of a non-critical state of thinking which is the default state underlying the human mind. In this non-critical state, the mind becomes a warehouse of facts, a receptacle of unfiltered ideas and arguments. 

The taken for granted becomes the norm. Conversely,  in the critical state the mind makes use of complex cognitive processes to filter out information and evaluate judgements. The taken for granted is problematised and put to the question. This dichotomy of critical versus uncritical is grounded within a general discussion of thinking skills taxonomies. 

Bloom’s taxonomy, first originated in 1956, is probably one of the most popular taxonomies that attempt to categorize educational objectives into several thinking skills organized along a continuum of cognitive complexity with higher order thinking skills at one end and lower order thinking skills at the other. 

In 2001, Anderson and Krathwohl revised Bloom’s taxonomy and introduced the following six verbs: remember, understand, apply, analyze, evaluate, and create. As Howard et al (2015) argued, “most students focus on the first three parts of this cognitive complexity. 

Critical thinking and creativity depend on the three more advanced parts of cognitive complexity: analyzing, evaluating, and creating” (p. 134)

Indeed, we are thinking animals but only when we become aware of our thinking, that is, when we engage in meta-thinking (thinking about thinking), that we take the first step towards becoming critical thinkers. 

The second implication of the word critical refers to the existence of implicitly biased or distorted norms and that it is the job of critical thinkers  to uncover and expose these distortions. 

One pertinent example in this regard is the phenomenon of fake news . The ability to recognize misinformation is a pure function of critical thinking. Being able to critically appraise and filter information allows one to develop clearer processes of thinking which is why critical thinking is seldom defined as ‘the ability to think clearly and rationally’ .

5 Important Critical Thinking Skills

Critical thinking, as stated earlier, is an analytic framework that consists of several thinking skills some of which include: 

1- Asking questions

The ability to think critically starts with posing serious and deep questions regarding what is normatively considered valid and true knowledge. Critical questions are precursors of deep learning. 

They drive one’s quest to uncover different perspectives, opinions, and dispositions. Critical thinkers do not ask questions for the sake of questions but to spark learning and discovery. They are motivated by a restless need to learn.

2- Problem solving

Critical thinkers are goal oriented. Their objective is to find solutions to emerging problems. These solutions can come in different forms and formats.  Whether it is to find the valid version of a piece of news, uncover the hidden motives behind an author’s statement, understand why things are the way they are, or to simply disambiguate a faulty line of reasoning and refute what appears to be solid arguments, critical thinkers are constantly propelled by an ethical and intellectual obligation to seek alternative perspectives, solutions, and ways of knowing. 

3- Analysing

Analytical practice is at the core of critical thinking. The abilities to ask questions and problem-solve are only effective when coupled with rigorous analytic practice. Analysis is where sifting chaff from grain takes place.  It entails looking at hints, hidden markers, implicit associations and implications and making informed decisions. Critical analysts are sharp observers. They do not simply look but they  see  and  envision  what the laymen can not readily see.  

4- Evaluating

Critical thinkers assess information against multiple criteria and never take propositions for granted. They consider knowledge as socially constructed and relative and is therefore always prone to contention, fallacies, and falsifications. Evaluation involves scrutinizing various sources and perspectives, taking into account excluded voices, and silent viewpoints.

5- Inferring

Inferring is another key critical thinking skill. It allows one to draw conclusions from analyzed data before making any educated guess. 

6- Active Listening

Active listening entails full engagement with the speaker, involving understanding, responding, and retaining the information shared. It enhances learning and problem-solving by ensuring clear communication.

7. Decision Making

Decision making involves evaluating alternatives, assessing evidence, and considering outcomes to choose the best course of action. It relies on critical thinking to make informed, logical judgments.

8. Prioritizing

Prioritizing requires sorting tasks by importance to efficiently manage time and resources. It is crucial for effective problem-solving and project management, ensuring focus on the most critical issues first.

elements are key to critical thinking

Elements of Critical Thinking

Critical thinking is a process that is composed of a number of elements. Stanford Encyclopedia of Philosophy outlined 11 components of the critical thinking process: observing, feeling, wondering, imagining, inferring, knowledge, consulting, identifying, judging, and deciding. I adapted Stanford’s categorisation of the elements of critical thinking and synthesized them into 8 key elements:

1- Observing

At the observation phase, one notices inconsistencies, irregularities, and abnormalities in their immediate environment. Observing is all about acknowledging the presence of an issue or a problematic that requires further investigation and scrutiny. 

After observing data, one wonders about possible scenarios, plans, actions, behaviours, etc that could have been applied but were not. Wondering is about posing questions and imagining possible answers.

3- Gather information

To seek answers to their questions, critical thinkers gather information from different sources. Their goal is to cover the issue from different angles and explore as many perspectives as possible. All possible sources of data are vetted with an eye on inconsistencies, differences, divergences and contradictions.

Analysis is an important element of the critical thinking process. It is through analysis that critical thinkers deconstruct arguments, reveal implicit biases, and explore alternative viewpoints. Analysis is a methodical process that entails examining and re-examining data searching for patterns of thought and identifying structural discrepancies

5- Synthesize

The next step after collecting data from multiple sources and analyzing it is to synthesize it. Critical thinkers put disparate ideas, assumptions, facts, and propositions together and combine them into an overarching argument. 

Effective synthesis requires deeper levels of understanding because one can only deconstruct and combine ideas after they have fully internalized them. 

Reflection is another central element of the critical thinking process. Reflection is an iterative process in which one re-assesses their analytical and argumentative logic searching for possible influences, biases, and prejudices that might have impacted their reasoning.

7- Identify

After gathering information, analyzing it and reflecting on it, the critical thinker is now in a position to identify problematic areas and isolate inconsistencies.  The key is to narrow the broad scope of an argument and deconstruct its structure in such a way that it becomes easier to tackle, one problem at a time.

The last element of the critical thinking process is taking decisions. As I stated earlier, the purpose behind critical thinking is for us to be able to make informed decisions, that is, decisions based on solid facts and arguments. 

elements are key to critical thinking

Characteristics of Critical Thinkers

Critical thinkers are normal individuals like everybody else except that they have developed strong cognitive filters that help them navigate the world in  more nuanced ways. Given their preoccupation with deeper forms of understanding , critical thinkers have developed unique characteristics including

➥  Empathetic : Critical thinkers are empathetic individuals. They acknowledge and understand the feelings of others, build affinities and sympathise with them.

➥  Flexible : critical thinkers are guided by logical and reasoned argumentation and therefore have no problem changing their positions and beliefs whenever a new convincing evidence emerges.  

➥  Hard working : Critical thinkers do not take shortcuts. They compare and contrast different sources, vet resources, debate arguments, uncover hidden relations and interconnections, and put the work necessary to reach what they believe are valid conclusions. 

➥  Independent : Critical thinkers do not swear allegiance to any creed, dogma, tribe, or ideology. Their creed is logic and reason. They thrive in intellectual freedom and have a deeper sense of responsibility and respect for others. Critical thinkers are self-directed and independent life-long learners.

➥  Reflective:  Critical thinkers are reflective individuals. They constantly reflect on their actions, thinking processes, emotions, and feelings. They always seek to uncover new shades of meanings, discover hidden feelings and reactions, and optimize their reflective practice.

➥  Objective:  Critical thinkers recognize their biases and personal assumptions and are explicit about their influences. Their methodology is evidence-based.

➥  Observant:  Critical analysts have an acute sense of observation and a sharp eye for detail. They view the minutiae of everyday life as possible sources of insightful data and the path towards enlightening hunches. 

elements are key to critical thinking

Examples of What Critical Thinkers Can Do

Critical thinkers are able to :

  • Identify fallacious arguments and provide counter-arguments.
  • Conceptualize and analyze ideas effectively.
  • Synthesize information from various sources into solid arguments.
  • Evaluate information, compare and contrast it, and identify argumentative strengths and weaknesses.
  • Structure arguments along a clear and logical order breaking down complex concepts into digestible ideas.
  • Use different forms of data collection methods to gather information including observation, experience, reading, reflection, etc.
  • Read between and beneath lines , access hidden meanings, and expose implications.

Final Thoughts

In this digital age where information overload is the norm rather than the exception, the call to arms is clear: Equip yourself with critical thinking skills. Far from a monolithic concept, critical thinking is an intricate tapestry of cognitive abilities that empower us to analyze, evaluate, and synthesize the world around us. From grappling with the constant bombardment of facts and fallacies in the media to dissecting the implicit biases that often go unnoticed, the value of critical thinking is incalculable.

References and further readings

  • Defining critical thinking (The Foundation for Critical Thinking)
  • Critical thinking (Stanford Encyclopedia of Philosophy)
  • Anderson, L. W., & Krathwohl, D. R. (Eds.). (2001). A taxonomy for learning, teaching, and assessing: A revision of Bloom’s taxonomy of educational objectives. New York: Addison Wesley Longman
  • What is critical thinking (University of Louisville)
  • 6 Critical skills you need to master now (RASMUSSEN University)
  • Critical thinking and problem solving (The University of Tennessee)
  • Bloom, B. S., Engelhart, M. D., Furst, E. J., Hill, W. H., & Krathwohl, D. R. (1956).Taxonomy of educational objectives: The classification of educational goals. Handbook I: Cognitive domain. New York: David McKay
  • Hanscomb, S. (2016). Critical thinking : The basics. Taylor & Francis Group.
  • Howard, L. w., Tang, T. L., & Austin, M. J (2015). Teaching Critical Thinking Skills: Ability, Motivation, Intervention, and the Pygmalion Effect.J Bus Ethics 128:133–147. DOI 10.1007/s10551-014-2084-0
  • Critical thinking: Educating competent citizen s (Elesapiens)

elements are key to critical thinking

Join our mailing list

Never miss an EdTech beat! Subscribe now for exclusive insights and resources .

elements are key to critical thinking

Meet Med Kharbach, PhD

Dr. Med Kharbach is an influential voice in the global educational technology landscape, with an extensive background in educational studies and a decade-long experience as a K-12 teacher. Holding a Ph.D. from Mount Saint Vincent University in Halifax, Canada, he brings a unique perspective to the educational world by integrating his profound academic knowledge with his hands-on teaching experience. Dr. Kharbach's academic pursuits encompass curriculum studies, discourse analysis, language learning/teaching, language and identity, emerging literacies, educational technology, and research methodologies. His work has been presented at numerous national and international conferences and published in various esteemed academic journals.

elements are key to critical thinking

Join our email list for exclusive EdTech content.

University of Louisville

  • Programs & Services
  • Delphi Center

Ideas to Action (i2a)

  • What is Critical Thinking?

The ability to think critically calls for a higher-order thinking than simply the ability to recall information.

Definitions of critical thinking, its elements, and its associated activities fill the educational literature of the past forty years. Critical thinking has been described as an ability to question; to acknowledge and test previously held assumptions; to recognize ambiguity; to examine, interpret, evaluate, reason, and reflect; to make informed judgments and decisions; and to clarify, articulate, and justify positions (Hullfish & Smith, 1961; Ennis, 1962; Ruggiero, 1975; Scriven, 1976; Hallet, 1984; Kitchener, 1986; Pascarella & Terenzini, 1991; Mines et al., 1990; Halpern, 1996; Paul & Elder, 2001; Petress, 2004; Holyoak & Morrison, 2005; among others).

After a careful review of the mountainous body of literature defining critical thinking and its elements, UofL has chosen to adopt the language of Michael Scriven and Richard Paul (2003) as a comprehensive, concise operating definition:

Critical thinking is the intellectually disciplined process of actively and skillfully conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication, as a guide to belief and action.

Paul and Scriven go on to suggest that critical thinking is based on: "universal intellectual values that transcend subject matter divisions: clarity, accuracy, precision, consistency, relevance, sound evidence, good reasons, depth, breadth, and fairness. It entails the examination of those structures or elements of thought implicit in all reasoning: purpose, problem, or question-at-issue, assumptions, concepts, empirical grounding; reasoning leading to conclusions, implication and consequences, objections from alternative viewpoints, and frame of reference. Critical thinking - in being responsive to variable subject matter, issues, and purposes - is incorporated in a family of interwoven modes of thinking, among them: scientific thinking, mathematical thinking, historical thinking, anthropological thinking, economic thinking, moral thinking, and philosophical thinking."

This conceptualization of critical thinking has been refined and developed further by Richard Paul and Linder Elder into the Paul-Elder framework of critical thinking. Currently, this approach is one of the most widely published and cited frameworks in the critical thinking literature. According to the Paul-Elder framework, critical thinking is the:

  • Analysis of thinking by focusing on the parts or structures of thinking ("the Elements of Thought")
  • Evaluation of thinking by focusing on the quality ("the Universal Intellectual Standards")
  • Improvement of thinking by using what you have learned ("the Intellectual Traits")

Selection of a Critical Thinking Framework

The University of Louisville chose the Paul-Elder model of Critical Thinking as the approach to guide our efforts in developing and enhancing our critical thinking curriculum. The Paul-Elder framework was selected based on criteria adapted from the characteristics of a good model of critical thinking developed at Surry Community College. The Paul-Elder critical thinking framework is comprehensive, uses discipline-neutral terminology, is applicable to all disciplines, defines specific cognitive skills including metacognition, and offers high quality resources.

Why the selection of a single critical thinking framework?

The use of a single critical thinking framework is an important aspect of institution-wide critical thinking initiatives (Paul and Nosich, 1993; Paul, 2004). According to this view, critical thinking instruction should not be relegated to one or two disciplines or departments with discipline specific language and conceptualizations. Rather, critical thinking instruction should be explicitly infused in all courses so that critical thinking skills can be developed and reinforced in student learning across the curriculum. The use of a common approach with a common language allows for a central organizer and for the development of critical thinking skill sets in all courses.

  • SACS & QEP
  • Planning and Implementation
  • Why Focus on Critical Thinking?
  • Paul-Elder Critical Thinking Framework
  • Culminating Undergraduate Experience
  • Community Engagement
  • Frequently Asked Questions
  • What is i2a?

Copyright © 2012 - University of Louisville , Delphi Center

The Elements of Thought

How we think….

The Elements of Thought

What is Critical Thinking?

To be honest, there are many definitions of critical thinking. You can search and find dozens and dozens, each a bit different. But they all seem to boil down to what Dr. Richard Paul once said:

Critical thinking is the art of analyzing and evaluating thinking with a view to improving it.

That’s a small sentence that says quite a lot. Let’s take it apart and see what we find.

First, thinking critically is an art, and like any art, it can be done well or done poorly. It takes time and practice to get good at it.There is not really a formula for doing it like there is in formal logic. We need our imagination to see connections, like a detective looking for patterns that help find who did it.

Critical thinking requires us to get into our mind, or the mind of someone else, to understand their reasoning. To do this, we need imagination. So, just as art reflects how an artist looks at the world, critical thinking helps us understand how someone’s thinking or actions reflects how they see the world.

We think all the time, but often we don’t look closely at thinking, at how we see things and how our thinking effects how we, and others, see the world.Critical thinking involves taking apart thinking and looking at how that thinking is constructed:

Like an archaeologist, the critical thinker looks for artifacts of reasoning from how a person writes or talks or acts. Critical thinking gives us the tools to dig out those clues and reconstruct the reasoning of the thinker.

When we have figured out how a person is thinking, then it’s time to look for the quality of the thinking. Remember that thinking can run the gamut from great thinking to poor thinking, so we need to judge the thinking, hold it up to a standard of excellence.By judging the quality of thinking, we can assess if the thinking is done well or not, if the reasoning is based on sound ideas or whether we can rely on the conclusions the thinker gives us.

So, we follow a set of criteria, a rubric that helps us to check the quality of thinking and whether it can be trusted.

What is powerful about critical thinking is that it helps us to not  only look into our own thinking, but also the thinking of others. We can analyze what Juliet thinks of Romeo when they first meet. Then we can analyze what they think of each other on the balcony. We can also analyze what Shakespeare thinks about Juliet, and even what you think about what Shakespeare thinks about Juliet. And then we can compare all of these, evaluate how strong their (and our) thinking is, and then see if we agree with how others think. Critical thinking can help us get into anyone’s mind.

WITH A VIEW TO IMPROVING IT

We always need to grow as thinkers, to become better at analyzing and evaluating our thinking and the thinking of others. In order to become a critical thinker we need to practice enough to make it a habit. Then we can make better decisions and act in accordance with what we have carefully reasoned.

Yes, it does take work and diligence, but also creativity and imagination. In the end, we not only become better thinkers and understand the world on a deeper level, but we become better people, understanding our place in the world and what we can do to improve it.

Critical thinking is the art of analyzing and evaluating thinking with a view to improving it.

' src=

  • Copy shortlink
  • Report this content
  • Manage subscriptions

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Working with sources
  • What Is Critical Thinking? | Definition & Examples

What Is Critical Thinking? | Definition & Examples

Published on May 30, 2022 by Eoghan Ryan . Revised on May 31, 2023.

Critical thinking is the ability to effectively analyze information and form a judgment .

To think critically, you must be aware of your own biases and assumptions when encountering information, and apply consistent standards when evaluating sources .

Critical thinking skills help you to:

  • Identify credible sources
  • Evaluate and respond to arguments
  • Assess alternative viewpoints
  • Test hypotheses against relevant criteria

Table of contents

Why is critical thinking important, critical thinking examples, how to think critically, other interesting articles, frequently asked questions about critical thinking.

Critical thinking is important for making judgments about sources of information and forming your own arguments. It emphasizes a rational, objective, and self-aware approach that can help you to identify credible sources and strengthen your conclusions.

Critical thinking is important in all disciplines and throughout all stages of the research process . The types of evidence used in the sciences and in the humanities may differ, but critical thinking skills are relevant to both.

In academic writing , critical thinking can help you to determine whether a source:

  • Is free from research bias
  • Provides evidence to support its research findings
  • Considers alternative viewpoints

Outside of academia, critical thinking goes hand in hand with information literacy to help you form opinions rationally and engage independently and critically with popular media.

Scribbr Citation Checker New

The AI-powered Citation Checker helps you avoid common mistakes such as:

  • Missing commas and periods
  • Incorrect usage of “et al.”
  • Ampersands (&) in narrative citations
  • Missing reference entries

elements are key to critical thinking

Critical thinking can help you to identify reliable sources of information that you can cite in your research paper . It can also guide your own research methods and inform your own arguments.

Outside of academia, critical thinking can help you to be aware of both your own and others’ biases and assumptions.

Academic examples

However, when you compare the findings of the study with other current research, you determine that the results seem improbable. You analyze the paper again, consulting the sources it cites.

You notice that the research was funded by the pharmaceutical company that created the treatment. Because of this, you view its results skeptically and determine that more independent research is necessary to confirm or refute them. Example: Poor critical thinking in an academic context You’re researching a paper on the impact wireless technology has had on developing countries that previously did not have large-scale communications infrastructure. You read an article that seems to confirm your hypothesis: the impact is mainly positive. Rather than evaluating the research methodology, you accept the findings uncritically.

Nonacademic examples

However, you decide to compare this review article with consumer reviews on a different site. You find that these reviews are not as positive. Some customers have had problems installing the alarm, and some have noted that it activates for no apparent reason.

You revisit the original review article. You notice that the words “sponsored content” appear in small print under the article title. Based on this, you conclude that the review is advertising and is therefore not an unbiased source. Example: Poor critical thinking in a nonacademic context You support a candidate in an upcoming election. You visit an online news site affiliated with their political party and read an article that criticizes their opponent. The article claims that the opponent is inexperienced in politics. You accept this without evidence, because it fits your preconceptions about the opponent.

There is no single way to think critically. How you engage with information will depend on the type of source you’re using and the information you need.

However, you can engage with sources in a systematic and critical way by asking certain questions when you encounter information. Like the CRAAP test , these questions focus on the currency , relevance , authority , accuracy , and purpose of a source of information.

When encountering information, ask:

  • Who is the author? Are they an expert in their field?
  • What do they say? Is their argument clear? Can you summarize it?
  • When did they say this? Is the source current?
  • Where is the information published? Is it an academic article? Is it peer-reviewed ?
  • Why did the author publish it? What is their motivation?
  • How do they make their argument? Is it backed up by evidence? Does it rely on opinion, speculation, or appeals to emotion ? Do they address alternative arguments?

Critical thinking also involves being aware of your own biases, not only those of others. When you make an argument or draw your own conclusions, you can ask similar questions about your own writing:

  • Am I only considering evidence that supports my preconceptions?
  • Is my argument expressed clearly and backed up with credible sources?
  • Would I be convinced by this argument coming from someone else?

If you want to know more about ChatGPT, AI tools , citation , and plagiarism , make sure to check out some of our other articles with explanations and examples.

  • ChatGPT vs human editor
  • ChatGPT citations
  • Is ChatGPT trustworthy?
  • Using ChatGPT for your studies
  • What is ChatGPT?
  • Chicago style
  • Paraphrasing

 Plagiarism

  • Types of plagiarism
  • Self-plagiarism
  • Avoiding plagiarism
  • Academic integrity
  • Consequences of plagiarism
  • Common knowledge

Don't submit your assignments before you do this

The academic proofreading tool has been trained on 1000s of academic texts. Making it the most accurate and reliable proofreading tool for students. Free citation check included.

elements are key to critical thinking

Try for free

Critical thinking refers to the ability to evaluate information and to be aware of biases or assumptions, including your own.

Like information literacy , it involves evaluating arguments, identifying and solving problems in an objective and systematic way, and clearly communicating your ideas.

Critical thinking skills include the ability to:

You can assess information and arguments critically by asking certain questions about the source. You can use the CRAAP test , focusing on the currency , relevance , authority , accuracy , and purpose of a source of information.

Ask questions such as:

  • Who is the author? Are they an expert?
  • How do they make their argument? Is it backed up by evidence?

A credible source should pass the CRAAP test  and follow these guidelines:

  • The information should be up to date and current.
  • The author and publication should be a trusted authority on the subject you are researching.
  • The sources the author cited should be easy to find, clear, and unbiased.
  • For a web source, the URL and layout should signify that it is trustworthy.

Information literacy refers to a broad range of skills, including the ability to find, evaluate, and use sources of information effectively.

Being information literate means that you:

  • Know how to find credible sources
  • Use relevant sources to inform your research
  • Understand what constitutes plagiarism
  • Know how to cite your sources correctly

Confirmation bias is the tendency to search, interpret, and recall information in a way that aligns with our pre-existing values, opinions, or beliefs. It refers to the ability to recollect information best when it amplifies what we already believe. Relatedly, we tend to forget information that contradicts our opinions.

Although selective recall is a component of confirmation bias, it should not be confused with recall bias.

On the other hand, recall bias refers to the differences in the ability between study participants to recall past events when self-reporting is used. This difference in accuracy or completeness of recollection is not related to beliefs or opinions. Rather, recall bias relates to other factors, such as the length of the recall period, age, and the characteristics of the disease under investigation.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Ryan, E. (2023, May 31). What Is Critical Thinking? | Definition & Examples. Scribbr. Retrieved August 12, 2024, from https://www.scribbr.com/working-with-sources/critical-thinking/

Is this article helpful?

Eoghan Ryan

Eoghan Ryan

Other students also liked, student guide: information literacy | meaning & examples, what are credible sources & how to spot them | examples, applying the craap test & evaluating sources, get unlimited documents corrected.

✔ Free APA citation check included ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

More From Forbes

10 elements of critical thinking – and how to develop them.

  • Share to Facebook
  • Share to Twitter
  • Share to Linkedin

creative idea.Concept of idea and innovation

My 6/7/24 post here – “Your Three Most Important Career Skills” – focused on the importance – and paucity – of critical thinking, critical listening, and critical reading.

Predictably, it prompted much reader response, mostly asking for elaboration.

What Comprises Critical Thinking

1. open-mindedness.

Malcolm Forbes postulated, “The role of education is to replace an empty mind with an open one.” Critical thinking needs receptivity to new ideas and perspectives, and willingness to reconsider one’s beliefs or opinions – no matter how fundamental – when new evidence or arguments arise.

2. Curiosity

“I’m not necessarily smarter than anyone else,” explained Albert Einstein. “I’m infinitely more curious.” He had a natural inclination – from early childhood – to ask questions, seek information, and explore various viewpoints. His favorite question: “What if…?”

Best High-Yield Savings Accounts Of 2024

Best 5% interest savings accounts of 2024, 3. mental stamina.

Critical thinking is difficult, rigorous, almost always takes time and patience, and can be exhausting. That’s OK, but you should never let a conclusion be the place where you got tired of thinking. Push on.

4. Analysis

Analysis breaks down complex information into smaller parts, to understand its components and how they relate. It’s our left brain at work: linear, logical, methodical, sequential, rational, and objective. It engages in deductive thinking. Computers also do this.

5. Interpretation and Inference

Interpretation makes meaning out of data, relying not just on the brain, but also on experience. It’s our transcendental right brain having fun: creative, intuitive, random, holistic, and playful. It engages in inductive thinking, which today’s computers can’t do, but which A.I. is trying. Through inference, we make sensible deductions based on available information; reach reasonable, workable conclusions; and assess the viability of those conclusions.

6. Evaluation

What’s it worth? To make better decisions, we must accurately assess the credibility, relevance, and significance of information, arguments, and/or evidence.

7. Articulation

“If you can’t explain something to a six-year-old,” declared Albert Einstein, “you probably don’t understand it yourself.” Critical intake and critical output are one and the same.

8. Problem-solving

Both sides of our brains solve problems, just differently. Critical thinking is about the ability to do both with equal aplomb.

9. Self-Accountability and Reflection

Bertrand Russell advised, "In all affairs it's a healthy thing now and then to hang a question mark on the things you’ve long taken for granted." In this case – our own thinking processes, biases, and assumptions – “now and then” should mean “always and ever.”

10. Metacognition

Avid self-awareness of one's own thinking processes, cognitive strategies, and sphere of awareness can insure ongoing improvement of critical skills.

Developing Your Critical Thinking

1. think creatively.

“Curiosity is the key to creativity,” said Akio Morita, founder of Sony. Cultivate your creativity by exploring the unknown and the ambiguous. Welcome different perspectives, alternative solutions, and new thinking. Always be looking for the spark. Listen to the new guy.

2. Ask Questions

Nothing starts until there is a question – or better, multiple questions. Cultivate a curious mindset by asking probing questions. Question assumptions, biases, and implications. Nothing is off the table.

3. Seek Diverse Perspectives

Diversity is much more than demographics. “Diversity,” explained Malcolm Forbes, “is the art of thinking independently together.” Welcome a variety of viewpoints and opinions, especially those different from your own. Engage in active discussions with people who hold different beliefs. Constantly challenge what you know or believe.

4. Evaluate Information

Learn to critically – and objectively – evaluate the credibility, relevance, and reliability of sources of information. Today’s chaotic media circus, further manipulated by special interests, elevates this challenge.

5. Practice Analytical Thinking

As analytical thinking is more orderly than creative thinking, it can be practiced every day. Good idea.

6. Develop Logical Reasoning Skills

Practice deductive and inductive reasoning to draw logical conclusions from what you already have. But remember, logic and creativity are often at odds.

Things look different in the rear-view mirror, and a day (or more) later.

8. Learn Different Problem-Solving Techniques

Different problems can be solved different ways. Conversely, many problems can be solved many ways.

9. Learn Active Listening

Identify the barriers to active listening – presuppositions, for example – and eliminate them. Fast.

10. Read. Read. Read!

Reading is the most proactive and stimulating way of taking in the world, not by clicking on little blue links, but by real reading: wide, deep, and time-consuming reading, which has a positive effect on thinking. Great leaders are great readers. This we know.

None of this happens in a day, but starting it happens any day.

Eli Amdur

  • Editorial Standards
  • Reprints & Permissions

Join The Conversation

One Community. Many Voices. Create a free account to share your thoughts. 

Forbes Community Guidelines

Our community is about connecting people through open and thoughtful conversations. We want our readers to share their views and exchange ideas and facts in a safe space.

In order to do so, please follow the posting rules in our site's  Terms of Service.   We've summarized some of those key rules below. Simply put, keep it civil.

Your post will be rejected if we notice that it seems to contain:

  • False or intentionally out-of-context or misleading information
  • Insults, profanity, incoherent, obscene or inflammatory language or threats of any kind
  • Attacks on the identity of other commenters or the article's author
  • Content that otherwise violates our site's  terms.

User accounts will be blocked if we notice or believe that users are engaged in:

  • Continuous attempts to re-post comments that have been previously moderated/rejected
  • Racist, sexist, homophobic or other discriminatory comments
  • Attempts or tactics that put the site security at risk
  • Actions that otherwise violate our site's  terms.

So, how can you be a power user?

  • Stay on topic and share your insights
  • Feel free to be clear and thoughtful to get your point across
  • ‘Like’ or ‘Dislike’ to show your point of view.
  • Protect your community.
  • Use the report tool to alert us when someone breaks the rules.

Thanks for reading our community guidelines. Please read the full list of posting rules found in our site's  Terms of Service.

  • Accessibility
  • Terms and Conditions
  • Privacy Policy

FocusedThink

Elements of Reasoning within Critical Thinking

  • Post author: Hayden J Williams
  • Post published: March 11, 2024
  • Post category: Mindset / Learning

Tired of confusing headlines and misleading ads? Critical thinking is the key…

In this article, we look at different critical thinking techniques to analyze information with confidence and avoid making snap judgments. We’ll break down the key elements – assumptions, evidence, and even hidden fallacies – that can confuse you or lead to mistakes.

Let’s begin!

Table of Contents

The Building Blocks of Reasoning

What is reasoning.

Reasoning is the cornerstone of critical thinking. It involves gathering evidence and using logic to reach conclusions. A good example is choosing a new movie. Good reasoning considers reviews (evidence) and your preferred genre (logic) to pick the perfect film. 

Good reasoning considers multiple reviews (evidence), your preferred genre and the movie’s plot (relationships between elements) to pick a satisfying film. Bad reasoning might pick a movie just because of the actors (limited information) without considering the genre or director (ignoring connections). 

 Critical thinking is double-checking your plan (evidence) to ensure a fun movie night (sound decision)! 

Key Elements of Reasoning

Evidence, the building block of reasoning, comes in various forms. 

A news article with research from medical professionals (factual) provides a solid foundation for understanding new treatments. 

Statistical evidence adds quantitative weight to the claims. For example, a study showing 80% of patients experienced improvement with a new treatment bolsters the findings in a medical research article.” 

However, a social media post with a friend’s “miracle cure” story (anecdotal) offers just one, uncertain piece of evidence. 

Good reasoning requires a variety of reliable evidence, not just a single, extraordinary claim. Choose your evidence wisely, build a strong case for your conclusion, and avoid shaky foundations!  

Assumptions

Assumptions are silent influencers, shaping the foundation of arguments. 

They are unspoken beliefs that underpin reasoning, guiding the trajectory of conclusions. Finding these hidden assumptions is crucial for unraveling the validity of arguments.  

Ads use assumptions a lot.

A commercial showing a happy family using a product assumes you value family time, and this product enhances it (hidden assumption). To understand arguments better, question hidden messages. Ask “why?” Why is this image used? What belief is it trying to trigger? Challenge these assumptions. Consider different viewpoints. Maybe family fun doesn’t require that product! By questioning assumptions, you become a more critical thinker and avoid falling for misleading ads. 

Inferences are conclusions derived from evidence. They are like connecting the dots between evidence and conclusions. They need logical steps to make sense.

You gather clues (facts) and use logic to form an educated guess. Strong inferences involve clear steps:

  • Evidence: What information is given?
  • Reasoning: How does this suggest something else?
  • Conclusion: What can you logically decide?

For instance, if it’s raining heavily and you see dark puddles everywhere, you can infer the ground is wet (evidence: rain, puddles).

Faulty Inferences: Not all inferences are perfect. Imagine a headline: “Local library overstocked with mysteries! Crime on the rise?” This leaps from book selection to a crime wave, ignoring other possibilities (popular genre, bulk purchase). Careful analysis of evidence is key to forming solid inferences.

Conclusions

Conclusions are the final answers we reach after piecing together evidence. Think of it like solving a puzzle. Strong evidence acts like the right puzzle pieces, leading to a clear picture. For instance, if a plant wither(evidence) and the soil is dry (more evidence), we can conclude it needs water (conclusion).

Weak evidence makes shaky conclusions. A headline like “Gym Membership Soars – Everyone Must Be Getting Fit!” jumps to a conclusion (increased fitness) without solid proof (gym membership doesn’t guarantee exercise). A better conclusion, based on stronger evidence (exercise tracking data), might be: “Fitness App Downloads Rise Alongside Gym Memberships.” Remember, solid conclusions rely on good evidence, not just assumptions.

Techniques for Evaluating Reasoning: Sharpening Your Critical Thinking Skills 

Unmasking hidden assumptions.

An assumption is an unstated belief or premise that is accepted without explicit evidence. They serve as the foundation for arguments, decisions, or reasoning but are often implicit. Spotting hidden assumptions is key to evaluating any argument.

Let’s see how this trips up companies:

Imagine “FitLife,” a fitness tracker company, launches a high-end watch with advanced calorie tracking and workout suggestions. They assume busy professionals, their target audience, crave detailed data and personalized routines. However, launch sales flop. Why? FitLife overlooked an assumption: busy professionals might prioritize convenience over in-depth tracking. A simpler band for basic activity monitoring might have resonated better.

Sharpen your critical thinking by uncovering hidden assumptions in marketing strategies. These assumptions can sink a product launch! Here’s your critical thinking toolkit:

  • Question the “Why”: Why is this product designed this way? Who is the ideal user, and what are their unstated needs ?
  • Consider Opposites: What if the opposite of the assumed preference is true? For example, if a fitness tracker touts in-depth data analysis, would someone actually prefer a simpler model?
  • Seek Diverse Perspectives: Talk to people outside the target audience. Do their needs align with the assumptions?

By actively questioning and analyzing, you become a more informed consumer. These skills also empower you to find faulty logic in everyday arguments, avoiding manipulation and promoting sound decision-making.

Evaluating Evidence:

Don’t be fooled by flashy marketing! Develop skills to assess evidence used to support claims. Here’s your toolkit:

  • Source Check: Who is presenting the information? Are they a reputable organization or someone with a stake in the outcome?
  • Bias Removing: Is the evidence presented fairly? Look for language that slants the message (e.g., “most doctors recommend” vs. “studies show”).
  • Stat Examination: Statistics can be misleading! Check sample sizes and how data is presented. A cereal ad might boast “40% more fiber!” But if the baseline serving is tiny, the actual increase might be insignificant.
  • Get the Full Picture: Don’t fall for data taken out of context. Always consider the broader situation. (e.g., “Don’t judge job numbers without looking at the bigger economic picture—see if it’s part of a larger trend…”
  • Fact-Check: Use fact-checking websites to confirm if what you’re hearing is true.
  • Ask the Experts: See if experts in the field agree with the information.
  • Stick to Reliable Sources: Prefer info from trusted places, like well-known journals or established publications.
  • Double-Check: Confirm details with multiple reliable sources for more certainty.

Real-world example :

A juice brand highlights a study showing their product has “twice the antioxidants” of competitor X. But the fine print reveals the study compared their large serving to competitor’s small one. Scrutinize evidence to be a smarter consumer and avoid falling victim to marketing manipulation.

Addressing Common Fallacies

A fallacy is a mistake in thinking or reasoning. It’s like a trap that can make an argument seem good even when it’s not. Fallacies often happen when there are errors in logic, misleading information, or an attempt to play with emotions instead of using solid reasoning.

  • Ad Hominem: Attacking the person, not the argument. Example: “You can’t trust their opinion on the matter; they’re always changing their mind.”
  • Appeal to Emotion: Using feelings instead of logic. Example: “Support this cause; think of the children suffering without your help.”
  • Appeal to Authority: Relying on a person or institution, not evidence. Example: “Believe in this product because a celebrity said it’s amazing.”
  • Begging the Question: Assuming what you’re trying to prove. Example: “The policy is good because it’s the right choice for us.”
  • Circular Reasoning: Using the conclusion to support itself. Example: “He’s the best candidate because he’s the most qualified, which is why he’s the best.”
  • False Analogy: Comparing unrelated things. Example: “A good politician is like a good coach – they need to be tough and yell to get results.” (Leadership styles in politics and sports can differ greatly).
  • False Dichotomy: Presenting only two options when more exist. Example: “Either agree with this plan, or you’re against progress.”
  • Hasty Generalization: Drawing a broad conclusion from limited data. Example: “I met one rude person from that city, so everyone there must be rude.”
  • Post Hoc Ergo Propter Hoc: Assuming causation because of chronological order. Example: “I wore my lucky socks, and we won the game, so the socks brought luck.”
  • Straw Man: Misrepresenting an opponent’s argument. Example: “They want to cut education funding entirely, leaving our kids with nothing.”
  • Slippery Slope: Predicting a chain of undesirable events. Example: “Allowing a small tax increase will lead to economic disaster.

elements of reasoning within critical thinking

Putting it into Practice: Applying Critical Thinking in Daily Life

Real-world scenarios:.

Turn yourself into a critical thinking detective! Here’s how to dissect arguments you encounter daily:

1. News Article: A headline loudly declares: “Coffee Drinkers Live Longer – New Research!” Apply Techniques : Look deeper. Does the study control for other factors like overall lifestyle? A correlation (coffee drinking, longer life) doesn’t guarantee coffee itself makes you live longer.

2. Online Review: A harsh review of a new movie reads: “The acting was awful, and the plot made no sense! Worst movie ever!” Apply Techniques: Find hidden assumptions. Does the reviewer dislike this specific genre? Are there any positive aspects of the movie mentioned?

3. Social Media Post: A friend enthusiastically shares a meme: “This politician is the only one who can save the country!” Apply Techniques: Check for fallacies. Is this an Appeal to Authority (celebrity endorsement) or a Straw Man (misrepresenting an opponent’s views)? Research the politician’s policies for a more informed decision .

4. Conversation with a Friend: This new restaurant is amazing! Everyone’s been raving about it.” Apply Techniques: Is this Appeal to the People (popularity)? Ask your friend about specifics: food, service, price. Their taste might differ from yours. Don’t blindly follow trends, decide based on your own preferences.

By actively analyzing evidence, assumptions, and potential fallacies, you become a more discerning thinker. You’ll be able to navigate arguments with confidence, avoiding manipulation and making well-informed choices in any situation.

Developing a Critical Thinking Habit : 

Sharpen Your Thinking: Everyday Critical Thinking Hacks  

Turn critical thinking into a superpower! Here are simple strategies to integrate these techniques into your daily life:

1. The “5W Method”: Before accepting information at face value, ask yourself the “who, what, when, where, and why” behind any claim.

  • Who is presenting the information? Are they credible?
  • What evidence supports the claim? Is it strong or anecdotal?
  • When was this information published? Is it outdated?
  • Where did you find this information? Is it a reliable source?
  • Why might someone be making this claim? Is there a bias?

2. Challenge Assumptions: Don’t take things at face value. Ask yourself: “What is being left unsaid?” Consider alternative perspectives.

3. Beware of Fallacies: Learn to recognize common fallacies like bandwagon appeals (everyone’s doing it) or hasty generalizations (one bad experience doesn’t define everything).

User Stories

Saving smarter.

Mark, a recent college graduate, was bombarded with credit card offers promising low introductory rates and “free” rewards. He felt pressured to sign up, but something felt off.  Remembering his lessons on critical thinking, Mark applied the 5W method. He researched the “low” interest rates – how long did they last? He scrutinized the reward programs – were the points valuable or difficult to redeem? He questioned the hidden fees and potential debt traps.

By deconstructing the flashy marketing with critical thinking skills, Mark avoided impulsive decisions. He chose a credit card with a transparent fee structure and a rewards program that aligned with his spending habits. Mark learned that critical thinking empowers him to make informed financial decisions, saving him money and avoiding unnecessary debt.

Between Two Offers

Sarah thinks carefully about two job offers. She considers her goals and avoids sticking only to her first thoughts by asking others for their opinions. Sarah also looks at different options, like negotiating or finding entirely new opportunities, staying open-minded. She thinks about possible challenges, making sure her decision matches her goals and is not influenced by biases.

Financial Goals

Maria thinks critically about her financial goals. She looks closely at possible thinking mistakes, like confirmation bias (preferring information that agrees with what she already believes) and hasty generalizations in other investment options. Maria uses evidence and careful decision-making to guide her wealth strategy, avoiding these pitfalls.

By incorporating these techniques, you too can become a more informed and empowered thinker, navigating the world with a healthy dose of skepticism and a thirst for truth.

Benefits of Critical Thinking

Critical thinking isn’t just about dissecting arguments; it’s about empowering yourself! Here’s how these skills transform your life:

1. Better Decision-Making: Critical thinking helps you make smarter decisions , like avoiding scams or choosing good investments, by teaching you how to analyze information effectively.

2. Improved Communication: Critical thinking sharpens your communication edge. By understanding reasoning patterns, you can identify logical fallacies in others’ arguments and build stronger ones yourself. You’ll learn to express your ideas clearly and concisely, considering different perspectives. Renowned thinker Richard Paul emphasizes that clear communication is vital for success.

3. Reduced Bias . Critical thinking enables you to spot your own biases and those present in information you come across, promoting a more fair and balanced approach. 

According to psychologist, Daniel Kahneman we often overestimate our understanding and underestimate chance. In simpler terms, critical thinking empowers you to think clearly, make better choices, and see through biases for a more informed and balanced life.

Final Thoughts

So, what are the elements of reasoning within critical thinking, the cornerstone of sound decision-making? They involve questioning assumptions, analyzing evidence, and avoiding thinking pitfalls like biases and fallacies. 

Embrace this mindset to navigate life’s complexities, making informed choices in all areas of your life, like entertainment and personal finance. 

This skill sharpens decision-making and communication , promoting a fair and balanced approach.   Cultivating critical thinking equips you to precisely analyze arguments from various points of view, pose questions that sharpen your focus , and challenge assumptions.

Let critical thinking be your guiding light, empowering every decision to align with your goals. Take charge, question, analyze, and transform your life through the lens of critical thinking!

Khan Academy: Reasoning

Was this helpful, you might also like.

Read more about the article Making Decisions Without Regard to Personal Consequences

Making Decisions Without Regard to Personal Consequences

Read more about the article Discover Which Learning Style Provides the Deepest Learning

Discover Which Learning Style Provides the Deepest Learning

Read more about the article Learner Engagement Strategies to Boost Success

Learner Engagement Strategies to Boost Success

Critical Thinking, Its Components and Assessment

In higher education and advanced education exemplified by graduate school education, demonstrating critical thinking skills is crucial to good scholarship. But what really is critical thinking? How is it demonstrated and how can professors measure such level of thinking?

In this article, I clarify critical thinking by exploring its definition, importance, components, and ways to develop this skill, among other things. This discussion considers the context of the world that gradually undergoes significant change due to artificial intelligence that gradually creep into our lives. We need to be discerning of what information is presented to us given the preponderance of erroneous information, misinformation, or simply the infodemic we face every day.

In general, how can we employ critical thinking to discern fact from fiction? How can we avoid being misled? Again, I highlight the important points in this discussion.

Table of Contents

Introduction.

In a fast-paced world where information and data flood our daily lives, it is increasingly essential to navigate with discernment, clarity, and analytical acumen in both personal and professional spheres. This necessity is where the profound relevance of critical thinking becomes clear.

Encompassing components like analysis, interpretation, and self-regulation, critical thinking is a cognitive process that enriches decision-making, problem-solving, and quality management across varied sectors.

This discussion will delve into what critical thinking entails, why it holds utmost significance in today’s world, the integral skills and dispositions it comprises, and how it can be effectively developed and measured.

Defining Critical Thinking

Critical thinking defined.

Critical thinking refers to the ability to analyze information objectively and make a reasoned judgment. It involves the evaluation of sources, such as data, facts, observable phenomenon, and research findings.

Critical thinkers can separate facts from opinions, evaluate credibility, identify prejudice or bias , distinguish between relevant and irrelevant information, and ascertain the validity of the information. This involves clear, rational, open-minded, and informed thinking.

So, what is critical thinking exactly? It’s the capability to think in a clear and rational manner about what actions to take or beliefs to hold. It includes the ability to independently engage in reflective thinking .

The Critical Thinking Mindset

Beyond the very technical aspects, critical thinking fundamentally involves a mental discipline that calls for reflective mindfulness, a sense of skepticism, and intellectual humility . Balancing these qualities with curiosity, creativity, and an appreciation for complexity, this mindset becomes pivotal within the decision-making process.

Essentially, the adoption of a critical thinking mindset allows for a robust evaluation of different possibilities. This process is based on established criteria and standards that enable clear, rationale thought, thus unlocking more informed, evidence-based decision making.

The Importance of Critical Thinking

Critical thinking plays a crucial role in professional environments. It is integral in problem-solving and decision-making processes, enabling professionals to analyze issue-related data, consider alternate perspectives, and make informed decisions based on sound reasoning and evidence.

Critical thinking is often assessed through various assignments, presentations, class discussions, and project-based activities. The purpose of these tasks is not only to measure a student’s ability to process and synthesize information but also their ability to draw connections between different concepts and build up well-reasoned arguments.

In science, for example, critical thinking helps researchers design experiments, interpret data, and derive conclusions. In business, critical thinking assists organizations in strategic planning, problem-solving, decision-making, and innovation. In education, critical thinking is crucial in developing skills in reading, writing, and learning.

Furthermore, critical thinking can foster creativity by necessitating the exploration of multiple viewpoints and solutions, it can enhance communication by promoting clarity, accuracy, and relevance in the exchange of ideas, and promote social harmony by encouraging open and objective discussions.

6 Components of Critical Thinking

1. analysis.

This involves examining information in detail in order to understand it better and to draw conclusions. It could be data , a concept , or a process .

2. Interpretation

This is the act of explaining the meaning of information . Critical thinkers deeply focus on a topic or issue, questioning and analyzing it from multiple perspectives.

Interpretation refers to the ability to understand and express the meaning or significance of a wide variety of experiences, situations, data, events, judgments, conventions, and criteria. It also involves making inferences — drawing out unseen implications from the information given.

3. Inference

It is the act of deriving logical conclusions from premises known or assumed to be true. Inferences can be accurate or inaccurate, logical or illogical, justified or unjustified.

4. Explanation

5. evaluation.

Evaluation in critical thinking refers to the process of determining the credibility and relevance of the information. This involves assessing the evidence supporting a claim, determining its source’s reliability, and judging the logical consistency of arguments.

Returning to the political debate example, evaluating might involve checking the sources of factual claims or judging whether the proposed solutions are feasible given the present socio-political conditions.

6. Self-Regulation

Dispositional elements of critical thinking, open-mindedness.

Open-mindedness involves being receptive to new ideas or conflicting perspectives. It implies the willingness to revise pre-existing beliefs based on new evidence or understandings. This characteristic helps critical thinkers avoid biases, consider all available evidence, and make fair judgments.

Intellectual Humility

Intellectual courage.

Intellectual courage refers to the willingness to evaluate all ideas and beliefs, even those that conflict with one’s own. Challenging comfortable assumptions in pursuit of truth is essential for critical thinking.

How to Develop Critical Thinking Skills

1. pursue continuous learning.

To hone your critical thinking skills, continuous learning is of paramount importance. This includes opening oneself up to an array of experiences and environments, entertaining diverse viewpoints and actively seeking opportunities to challenge your pre-existing beliefs.

Anyone who stops learning is old, whether at twenty or eighty. Anyone who keeps learning stays young.

2. Challenge the Status Quo

Being a critical thinker also involves questioning the accepted norms and challenging the traditional wisdom. Instead of simply accepting things as they are, delve deeper to understand the reasons behind their existence.

3. Understand Diverse Perspectives

4. embrace calculated risks.

Developing your critical thinking skills may entail taking calculated risks. This includes stepping out of your comfort zone to experience new things and ideas that might challenge your previous assumptions. This involves a careful analysis of the pros and cons before making an informed decision based on your findings.

5. Promote Open-Mindedness

6. keep a reflective journal, measuring critical thinking.

Critical thinking can fundamentally be described as one’s aptitude to assess, conceptualize, apply, and critically examine information gathered or produced through various means, such as observation, dialogue, reflection, or reasoning. This intellectual process encourages making well-reasoned judgments based on solid evidence and logic rather than accepting arguments and conclusions at face value.

How we measure critical thinking, however, can vary. While these capabilities may sound subjective, there are objective ways on how to measure critical thinking. I enumerate some of them in the next section.

1. Standardized Tests to Measure Critical Thinking

The Ennis-Weir Critical Thinking Essay Test measures the ability of students to reason through a problem and to express their reasoning in writing. This type of measurement tool is used mainly in educational settings, but it offers valuable insight into individual critical thinking skills.

2. Performance Assessments

Specific critical thinking aspects might be identified and evaluated using rubrics – criteria set to ascertain a person’s ability to identify, summarize, and offer solutions to problems while also taking various perspectives into account.

3. Self and Peer Evaluations

In addition to the aforementioned, self and peer evaluations provide another measure of critical thinking. These require individuals to introspect on their cognitive processes or inspect the same in their peers.

Interpreting The Results

Key takeaways.

As we stand in an era of information overload, the value of critical thinking in deciphering truth from noise cannot be overstated. It enhances our ability to analyze, interpret, evaluate, and take calculated risks in various facets of life, ensuring we make informed, intelligent decisions.

As effortlessly as it might seem to come for some, critical thinking, like any other skill, can be cultivated and honed over time with dedication and the right strategies. These skills can be measured with tools like the Watson-Glaser Critical Thinking Appraisal, leading to a more informed understanding of an individual’s critical thinking capabilities.

Therefore, investing in the development and assessment of critical thinking skills is an investment in a more discerning, informed, and intellectual society.

In conclusion, critical thinking is not only a valuable but a crucial life skill. In today’s information-rich world, the ability to analyze data and make swift, efficient decisions is vital. Thus, understanding critical thinking and its significance, and knowing how it is measured and can be improved, is key to personal and professional growth.

Related Posts

What 5 top sources of nutrients does our body need (and the significance of water therapy), 14 challenges of modular learning to students and teachers, variables of the study in the research paradigm: which ones to include, about the author, patrick regoniel, simplyeducate.me privacy policy.

Critical thinking definition

elements are key to critical thinking

Critical thinking, as described by Oxford Languages, is the objective analysis and evaluation of an issue in order to form a judgement.

Active and skillful approach, evaluation, assessment, synthesis, and/or evaluation of information obtained from, or made by, observation, knowledge, reflection, acumen or conversation, as a guide to belief and action, requires the critical thinking process, which is why it's often used in education and academics.

Some even may view it as a backbone of modern thought.

However, it's a skill, and skills must be trained and encouraged to be used at its full potential.

People turn up to various approaches in improving their critical thinking, like:

  • Developing technical and problem-solving skills
  • Engaging in more active listening
  • Actively questioning their assumptions and beliefs
  • Seeking out more diversity of thought
  • Opening up their curiosity in an intellectual way etc.

Is critical thinking useful in writing?

Critical thinking can help in planning your paper and making it more concise, but it's not obvious at first. We carefully pinpointed some the questions you should ask yourself when boosting critical thinking in writing:

  • What information should be included?
  • Which information resources should the author look to?
  • What degree of technical knowledge should the report assume its audience has?
  • What is the most effective way to show information?
  • How should the report be organized?
  • How should it be designed?
  • What tone and level of language difficulty should the document have?

Usage of critical thinking comes down not only to the outline of your paper, it also begs the question: How can we use critical thinking solving problems in our writing's topic?

Let's say, you have a Powerpoint on how critical thinking can reduce poverty in the United States. You'll primarily have to define critical thinking for the viewers, as well as use a lot of critical thinking questions and synonyms to get them to be familiar with your methods and start the thinking process behind it.

Are there any services that can help me use more critical thinking?

We understand that it's difficult to learn how to use critical thinking more effectively in just one article, but our service is here to help.

We are a team specializing in writing essays and other assignments for college students and all other types of customers who need a helping hand in its making. We cover a great range of topics, offer perfect quality work, always deliver on time and aim to leave our customers completely satisfied with what they ordered.

The ordering process is fully online, and it goes as follows:

  • Select the topic and the deadline of your essay.
  • Provide us with any details, requirements, statements that should be emphasized or particular parts of the essay writing process you struggle with.
  • Leave the email address, where your completed order will be sent to.
  • Select your prefered payment type, sit back and relax!

With lots of experience on the market, professionally degreed essay writers , online 24/7 customer support and incredibly low prices, you won't find a service offering a better deal than ours.

eSchool News

LIVE @ ISTE 2024: Exclusive Coverage

elements are key to critical thinking

Critical thinking in the digital age of AI: Information literacy is key

With the birth of ai, disinformation has entered a new era, rendering it critical that students possess strong information literacy skills.

elements are key to critical thinking

Key points:

  • Information literacy skills can help students navigate the array of disinformation scenarios in the digital world
  • 5 news literacy resources for students
  • Adding AI to your K-12 digital citizenship curriculum
  • For more news on information literacy, visit eSN’s Digital Learning hub

From New York to Texas, the pro-Palestinian protests sweeping U.S. colleges have become a flashpoint for viral disinformation, from falsely attributed “Jewish genocide” chants to debunked claims of Hamas presence . With the tenor of allegations reaching a fever pitch, Columbia University students have even launched their own fact-checking Twitter account. As this highly-charged moment collides with a hyper-partisan landscape, it offers a stark reminder of how disinformation thrives at the intersection of fierce emotions and polarized politics, threatening to drown out nuance, facts, and good-faith dialogue when they are needed most. All of this points to the urgency of tackling disinformation through information literacy.

Disinformation has long played a role in global events. Technological change and increasingly global communications have made the deliberate spread of inaccurate information faster and more impactful. With the birth of AI, disinformation has entered a new era, rendering it critical to teach students how to question sources, spot fakes and be discerning consumers of news, social media, and information.  

AI has dramatically complicated the information landscape by rapidly generating and amplifying deceptive narratives, deepfakes, and AI-generated visuals, drawing concern from global leaders as a major emerging challenge. The World Economic Forum’s latest Global Risks Report , which surveyed experts from academia, business, government, the international community, and civil society, named misinformation and disinformation from AI as the top global risk over the next two years–ahead of climate change and war.

The stakes are high, especially as the U.S. approaches a critical election year–one that will undoubtedly be subject to disinformation, a force that voters will remember as having played a critical role in the 2016 and 2020 elections.

As an academic who has studied how digital technology is used by governments and non-state actors for the purposes of repression and information control, these issues are especially concerning. There is an urgent need to promote greater critical thinking among young people, to give them the tools to detect what information is authentic and what has been manipulated. Information literacy, specifically across digital platforms, should be a mandatory part of every K-12 curriculum, to combat the rise of disinformation and develop more discerning students ready to take on an AI-driven future.

How and where disinformation can take place

Disinformation can show up anywhere, but it thrives on stories that appeal to emotions. Election issues and partisan politics are a prime example. During the pandemic, COVID-19 disinformation narratives, spanning the bizarre claims that the disease is spread by 5G and other conspiracies, spread faster than the virus itself–thanks to digital technology. Anti-vaccine groups essentially tricked Facebook’s algorithms into allowing posts that spread disinformation by using a carrot emoji in place of the word “vaccine.” Looking at climate change–another highly polarized and partisan issue–a probe into a subset of social media accounts revealed hundreds of AI-generated and stolen pictures used in greenwashing campaigns.

Praying on the emotions that emerged after the deadly October 7 th attacks and the ensuing attacks on Gaza, deepfakes powered by AI have spread at an unprecedented pace. Soon after October 7 th , a fake story emerged that Qatar had threatened to cut off the world’s natural gas supply if Israel didn’t stop its bombing in Gaza, garnering millions of views before it was ultimately debunked . More recently, the United Nations Relief and Works Agency (UNRWA) has been a target of disinformation, thanks to a network of fake accounts and websites that have collaborated to spread accusations about the agency’s ties with Hamas. 

Not only is disinformation incredibly damaging to the delivery of accurate, verifiable information, it has eroded the public’s trust in some of our most reliable institutions. Only 32 percent of Americans say they trust the mass media, a figure that is tied with record-low levels in 2016.

Engaging with disinformation and AI as teachable moments

Disinformation can be rectified through fact checking, but in many cases, a false story has already done its damage before it is corrected. Another strategy is ‘prebunking,’ a technique gaining momentum that helps to build preemptive resilience to misinformation. We can combat the spread of disinformation by encouraging and teaching more critical thinking, especially about AI, algorithms, and deception, and the value of greater subject matter knowledge.  

Whether you are a teacher in K-12 schools, a university instructor, or simply an individual who actively engages in online platforms, there are many steps that can be taken to ensure a greater understanding and literacy around disinformation and AI. This will in turn instill greater trust in the institutions and organizations that disseminate the information we are seeking.

Context-based case studies, such as videos of celebrities and influencers, can serve as important teaching moments. In my classes, I’ve challenged students to discern what is a deepfake or AI-generated image through exercises such as reverse image searches. This teaches them to detect clues such as fuzzy details, inconsistent lighting, out-of-sync audio and visuals, and the credibility of the image source. We spend time analyzing and discussing the spread, origins, and nature of social media manipulation, which equips students with important data literacy skills.

Bringing the study of disinformation to the classroom

What we know about the world ultimately informs how we approach disinformation and deception. Today’s students need a cross-disciplinary approach that starts early, so the foundations of critical thinking and information literacy are instilled at a young age and stick with them as they grow and mature.

In Finland, media literacy constitutes a core component part of the national curriculum, starting in preschool. They start with understanding the basic elements of media, and build from there to understand more complex elements, such as identifying sources. It is not a single subject–rather, it is taught across different disciplines, including Finnish language and literature, math, and art to grow a well-rounded set of analytical skills. In a survey published by the Open Society Institute in Bulgaria, Finland has ranked No. 1 of 41 European countries on resilience against misinformation for the fifth time in a row. Finland’s population also has a higher level of trust in news and other institutions, with 76 percent of Finns considering print and digital newspapers to be reliable, according to a survey conducted by market research company IRO research.

There is no denying the impact of disinformation and the stronghold it is having on political processes around the world. We will doubtless see the use of disinformation throughout 2024 U.S. presidential election battle, but a concerted effort on developing greater critical thinking can help alleviate the impact. By becoming more knowledgeable about what disinformation is, as well as different countries, cultures, and subjects, we can better navigate the array of disinformation scenarios in the digital world and foster a questioning mindset.

elements are key to critical thinking

Sign up for our K-12 newsletter

  • Recent Posts

Dr. Marc Owen Jones is an Associate Professor of Digital Humanities at Northwestern University in Qatar.

  • Critical thinking in the digital age of AI: Information literacy is key - August 16, 2024
  • High school computer science classes might expand in Michigan–will that address equity issues? - August 16, 2024
  • 5 strategies to navigate science literacy in the digital age - August 15, 2024

Want to share a great resource? Let us know at [email protected] .

elements are key to critical thinking

Username or Email Address

Remember Me

elements are key to critical thinking

" * " indicates required fields

eSchool News uses cookies to improve your experience. Visit our Privacy Policy  for more information.

elements are key to critical thinking

icon

What Kamala Harris has said so far on key issues in her campaign

As she ramps up her nascent presidential campaign, Vice President Kamala Harris is revealing how she will address the key issues facing the nation.

In speeches and rallies, she has voiced support for continuing many of President Joe Biden’s measures, such as lowering drug costs , forgiving student loan debt and eliminating so-called junk fees. But Harris has made it clear that she has her own views on some key matters, particularly Israel’s treatment of Gazans in its war with Hamas.

In a departure from her presidential run in 2020, the Harris campaign has confirmed that she’s moved away from many of her more progressive stances, such as her interest in a single-payer health insurance system and a ban on fracking.

Harris is also expected to put her own stamp and style on matters ranging from abortion to the economy to immigration, as she aims to walk a fine line of taking credit for the administration’s accomplishments while not being jointly blamed by voters for its shortcomings.

Her early presidential campaign speeches have offered insights into her priorities, though she’s mainly voiced general talking points and has yet to release more nuanced plans. Like Biden, she intends to contrast her vision for America with that of former President Donald Trump. ( See Trump’s campaign promises here .)

“In this moment, I believe we face a choice between two different visions for our nation: one focused on the future, the other focused on the past,” she told members of the historically Black sorority Zeta Phi Beta at an event in Indianapolis in late July. “And with your support, I am fighting for our nation’s future.”

Here’s what we know about Harris’ views:

Harris took on the lead role of championing abortion rights for the administration after Roe v. Wade was overturned in June 2022. This past January, she started a “ reproductive freedoms tour ” to multiple states, including a stop in Minnesota thought to be the first by a sitting US president or vice president at an abortion clinic .

On abortion access, Harris embraced more progressive policies than Biden in the 2020 campaign, as a candidate criticizing his previous support for the Hyde Amendment , a measure that blocks federal funds from being used for most abortions.

Policy experts suggested that although Harris’ current policies on abortion and reproductive rights may not differ significantly from Biden’s, as a result of her national tour and her own focus on maternal health , she may be a stronger messenger.

High prices are a top concern for many Americans who are struggling to afford the cost of living after a spell of steep inflation. Many voters give Biden poor marks for his handling of the economy, and Harris may also face their wrath.

In her early campaign speeches, Harris has echoed many of the same themes as Biden, saying she wants to give Americans more opportunities to get ahead. She’s particularly concerned about making care – health care, child care, elder care and family leave – more affordable and available.

Harris promised at a late July rally to continue the Biden administration’s drive to eliminate so-called “junk fees” and to fully disclose all charges, such as for events, lodging and car rentals. In early August, the administration proposed a rule that would ban airlines from charging parents extra fees to have their kids sit next to them.

On day one, I will take on price gouging and bring down costs. We will ban more of those hidden fees and surprise late charges that banks and other companies use to pad their profits.”

Since becoming vice president, Harris has taken more moderate positions, but a look at her 2020 campaign promises reveals a more progressive bent than Biden.

As a senator and 2020 presidential candidate, Harris proposed providing middle-class and working families with a refundable tax credit of up to $6,000 a year (per couple) to help keep up with living expenses. Titled the LIFT the Middle Class Act, or Livable Incomes for Families Today, the measure would have cost at the time an estimated $3 trillion over 10 years.

Unlike a typical tax credit, the bill would allow taxpayers to receive the benefit – up to $500 – on a monthly basis so families don’t have to turn to payday loans with very high interest rates.

As a presidential candidate, Harris also advocated for raising the corporate income tax rate to 35%, where it was before the 2017 Tax Cuts and Jobs Act that Trump and congressional Republicans pushed through Congress reduced the rate to 21%. That’s higher than the 28% Biden has proposed.

Affordable housing was also on Harris’ radar. As a senator, she introduced the Rent Relief Act, which would establish a refundable tax credit for renters who annually spend more than 30% of their gross income on rent and utilities. The amount of the credit would range from 25% to 100% of the excess rent, depending on the renter’s income.

Harris called housing a human right and said in a 2019 news release on the bill that every American deserves to have basic security and dignity in their own home.

Consumer debt

Hefty debt loads, which weigh on people’s finances and hurt their ability to buy homes, get car loans or start small businesses, are also an area of interest to Harris.

As vice president, she has promoted the Biden administration’s initiatives on student debt, which have so far forgiven more than $168 billion for nearly 4.8 million borrowers . In mid-July, Harris said in a post on X that “nearly 950,000 public servants have benefitted” from student debt forgiveness, compared with only 7,000 when Biden was inaugurated.

A potential Harris administration could keep that momentum going – though some of Biden’s efforts have gotten tangled up in litigation, such as a program aimed at cutting monthly student loan payments for roughly 3 million borrowers enrolled in a repayment plan the administration implemented last year.

The vice president has also been a leader in the White House efforts to ban medical debt from credit reports, noting that those with medical debt are no less likely to repay a loan than those who don’t have unpaid medical bills.

In a late July statement praising North Carolina’s move to relieve the medical debt of about 2 million residents, Harris said that she is “committed to continuing to relieve the burden of medical debt and creating a future where every person has the opportunity to build wealth and thrive.”

Health care

Harris, who has had shifting stances on health care in the past, confirmed in late July through her campaign that she no longer supports a single-payer health care system .

During her 2020 campaign, Harris advocated for shifting the US to a government-backed health insurance system but stopped short of wanting to completely eliminate private insurance.

The measure called for transitioning to a Medicare-for-All-type system over 10 years but continuing to allow private insurance companies to offer Medicare plans.

The proposal would not have raised taxes on the middle class to pay for the coverage expansion. Instead, it would raise the needed funds by taxing Wall Street trades and transactions and changing the taxation of offshore corporate income.

When it comes to reducing drug costs, Harris previously proposed allowing the federal government to set “a fair price” for any drug sold at a cheaper price in any economically comparable country, including Canada, the United Kingdom, France, Japan or Australia. If manufacturers were found to be price gouging, the government could import their drugs from abroad or, in egregious cases, use its existing but never-used “march-in” authority to license a drug company’s patent to a rival that would produce the medication at a lower cost.

Harris has been a champion on climate and environmental justice for decades. As California’s attorney general, Harris sued big oil companies like BP and ConocoPhillips, and investigated Exxon Mobil for its role in climate change disinformation. While in the Senate, she sponsored the Green New Deal resolution.

During her 2020 campaign, she enthusiastically supported a ban on fracking — but a Harris campaign official said in late July that she no longer supports such a ban.

Fracking is the process of using liquid to free natural gas from rock formations – and the primary mode for extracting gas for energy in battleground Pennsylvania. During a September 2019 climate crisis town hall hosted by CNN, she said she would start “with what we can do on Day 1 around public lands.” She walked that back later when she became Biden’s running mate.

Biden has been the most pro-climate president in history, and climate advocates find Harris to be an exciting candidate in her own right. Democrats and climate activists are planning to campaign on the stark contrasts between Harris and Trump , who vowed to push America decisively back to fossil fuels, promising to unwind Biden’s climate and clean energy legacy and pull America out of its global climate commitments.

If elected, one of the biggest climate goals Harris would have to craft early in her administration is how much the US would reduce its climate pollution by 2035 – a requirement of the Paris climate agreement .

Immigration

Harris has quickly started trying to counter Trump’s attacks on her immigration record.

Her campaign released a video in late July citing Harris’ support for increasing the number of Border Patrol agents and Trump’s successful push to scuttle a bipartisan immigration deal that included some of the toughest border security measures in recent memory.

The vice president has changed her position on border control since her 2020 campaign, when she suggested that Democrats needed to “critically examine” the role of Immigration and Customs Enforcement, or ICE, after being asked whether she sided with those in the party arguing to abolish the department.

In June of this year, the White House announced a crackdown on asylum claims meant to continue reducing crossings at the US-Mexico border – a policy that Harris’ campaign manager, Julie Chavez Rodriguez, indicated in late July to CBS News would continue under a Harris administration.

Trump’s attacks stem from Biden having tasked Harris with overseeing diplomatic efforts in Central America in March 2021. While Harris focused on long-term fixes, the Department of Homeland Security remained responsible for overseeing border security.

She has only occasionally talked about her efforts as the situation along the US-Mexico border became a political vulnerability for Biden. But she put her own stamp on the administration’s efforts, engaging the private sector.

Harris pulled together the Partnership for Central America, which has acted as a liaison between companies and the US government. Her team and the partnership are closely coordinating on initiatives that have led to job creation in the region. Harris has also engaged directly with foreign leaders in the region.

Experts credit Harris’ ability to secure private-sector investments as her most visible action in the region to date but have cautioned about the long-term durability of those investments.

Israel-Hamas

The Israel-Hamas war is the most fraught foreign policy issue facing the country and has spurred a multitude of protests around the US since it began in October.

After meeting with Israeli Prime Minister Benjamin Netanyahu in late July, Harris gave a forceful and notable speech about the situation in Gaza.

We cannot look away in the face of these tragedies. We cannot allow ourselves to become numb to the suffering. And I will not be silent.”

Harris echoed Biden’s repeated comments about the “ironclad support” and “unwavering commitment” to Israel. The country has a right to defend itself, she said, while noting, “how it does so, matters.”

However, the empathy she expressed regarding the Palestinian plight and suffering was far more forceful than what Biden has said on the matter in recent months. Harris mentioned twice the “serious concern” she expressed to Netanyahu about the civilian deaths in Gaza, the humanitarian situation and destruction she called “catastrophic” and “devastating.”

She went on to describe “the images of dead children and desperate hungry people fleeing for safety, sometimes displaced for the second, third or fourth time.”

Harris emphasized the need to get the Israeli hostages back from Hamas captivity, naming the eight Israeli-American hostages – three of whom have been killed.

But when describing the ceasefire deal in the works, she didn’t highlight the hostage for prisoner exchange or aid to be let into Gaza. Instead, she singled out the fact that the deal stipulates the withdrawal by the Israeli military from populated areas in the first phase before withdrawing “entirely” from Gaza before “a permanent end to the hostilities.”

Harris didn’t preside over Netanyahu’s speech to Congress in late July, instead choosing to stick with a prescheduled trip to a sorority event in Indiana.

Harris is committed to supporting Ukraine in its fight against Russian aggression, having met with Ukrainian President Volodymyr Zelensky at least six times and announcing last month $1.5 billion for energy assistance, humanitarian needs and other aid for the war-torn country.

At the Munich Security Conference earlier this year, Harris said: “I will make clear President Joe Biden and I stand with Ukraine. In partnership with supportive, bipartisan majorities in both houses of the United States Congress, we will work to secure critical weapons and resources that Ukraine so badly needs. And let me be clear: The failure to do so would be a gift to Vladimir Putin.”

More broadly, NATO is central to our approach to global security. For President Biden and me, our sacred commitment to NATO remains ironclad. And I do believe, as I have said before, NATO is the greatest military alliance the world has ever known.”

Police funding

The Harris campaign has also walked back the “defund the police” sentiment that Harris voiced in 2020. What she meant is she supports being “tough and smart on crime,” Mitch Landrieu, national co-chair for the Harris campaign and former mayor of New Orleans, told CNN’s Pamela Brown in late July.

In the midst of nationwide 2020 protests sparked by George Floyd’s murder by a Minneapolis police officer, Harris voiced support for the “defund the police” movement, which argues for redirecting funds from law enforcement to social services. Throughout that summer, Harris supported the movement and called for demilitarizing police departments.

Democrats largely backed away from calls to defund the police after Republicans attempted to tie the movement to increases in crime during the 2022 midterm elections.

Related links

elements are key to critical thinking

Additional credits

Home

Site Search

  • About ARPA-E
  • Team Directory
  • ARPA-E History
  • Annual Reports
  • Budget Requests
  • Apply For Funding
  • Authorization
  • View Active Programs
  • Search Our Programs
  • Search Individual Projects
  • Interactive Project Map
  • Exploratory Topics
  • The SCALEUP Program
  • OPEN Programs
  • ARPA-E Technology-to-Market
  • Technology Commercialization
  • External Engagement Model
  • Investor Updates
  • ARPA-E News & Media
  • Press Releases
  • ARPA-E Disruptors
  • Publications
  • ARPA-E Events
  • Energy Innovation Summit
  • Careers at ARPA-E
  • Job Opportunities
  • Life at ARPA-E
  • Pre-Award Guidance
  • Post-Award Guidance
  • ARPA-E FAQs
  • General Questions
  • Current Funding Opportunities
  • Closed Funding Opportunities

Seaweed

The Search for Critical Minerals Takes ARPA-E Awardee to an Unlikely Place

This spring, ARPA-E awardee University of Alaska Fairbanks (UAF) set out to study critical minerals accumulating in wild seaweed in a remote corner of Alaska. The project is just one of ARPA-E’s ongoing awards to investigate algal mining , a transformative research area using the natural hyperaccumulating ability of seaweed to naturally concentrate rare earth elements from seawater.

Securing critical minerals is crucial for enabling decarbonized energy technologies of the future, but demand for valuable minerals has been outpacing supply. To address this need, ARPA-E is spurring new technologies that could someday become market-ready domestic supplies of critical minerals. 

elements are key to critical thinking

UAF researchers take in the morning light on their way to collect samples in the waters surrounding Bokan Mountain.

Compared with other ARPA-E critical minerals projects that look to improve existing mining practices , UAF’s approach is more unconventional.  

The project work takes place at Bokan Mountain on Prince of Wales Island in Southeast Alaska. The mountain is the site of a former uranium mine, and is also home to a unique geologic feature: it contains exposed, naturally occurring ore that has high levels of rare earth elements. Rare earths are key components of electric vehicle batteries, wind turbines, solar panels, and many other clean energy technologies, but the United States only has one domestic rare earth element mine.

elements are key to critical thinking

Bokan Mountain is located on Prince of Wales Island in Southeast Alaska. 

elements are key to critical thinking

Bokan Mountain’s exposed ore stands tall over forests that blanket the island.  

UAF is studying if rare earth elements from Bokan leach into surrounding coastal waters, and how they potentially hyperaccumulate in wild seaweeds. The location is a natural laboratory to learn hints of how rare earth elements vary naturally in seawater and how environmental factors affect uptake by seaweeds.

elements are key to critical thinking

Researchers collect seaweed (top) and seawater (bottom left) and processes their samples (bottom right).

Researchers “fish” seaweed by boat or harvest it while snorkeling, as well as collect seawater, stream water, and rock samples. All samples will be later analyzed in the lab, and the team will continue visiting the site through next spring.  

elements are key to critical thinking

The sun sets over Bokan Mountain.

While the project is hyper-local to start, it will ultimately inform the creation of a computational model to determine the applicability of algal mining in other regions along U.S. shorelines.  

While no algal mining operations exist in the world today, these projects support a nascent technology that could one day transform mining.  

For the last several weeks, ARPA-E has featured innovative work in securing a domestic supply of critical materials for energy, including algal mining and ARPA-E’s long-term investment in critical mineral research . Be sure to subscribe to the  ARPA-E Newsletter   and follow us on LinkedIn ,  X , and  Facebook  to get the latest updates.

Photo Credits: All photos by UAF Marine Team.  Photos of Bokan Mountain in Prince of Wales by Camryn Kaspari.  

Toward a more orderly US energy transition: Six key action areas

The passage of the Inflation Reduction Act (IRA) —as well as the commitments made by the federal government to cut greenhouse-gas (GHG) emissions by 50 to 52 percent by 2030 and achieve a net-zero grid by 2035—has given new momentum in the United States to public- and private-sector efforts to moderate the effects of climate change. At the same time, these efforts have to contend with powerful headwinds arising from the war in Ukraine, disruptions to global supply chains, and exacerbated inflationary trends.

About the authors

This article is a collaborative effort by Gracie Brown, Blake Houghton, Jesse Noffsinger, Hamid Samandari , and Humayun Tai , representing views from McKinsey’s Global Energy and Materials Practice and McKinsey Sustainability.

The net-zero transition is predicated on substituting electricity for fossil fuels. Therefore, a key enabling step is to decarbonize the electric sector, which currently accounts for 25 percent of US GHG emissions. Such a step will, by nature, have to be front-loaded. This will require new policies, market mechanisms, business models, and technologies to be developed and deployed at scale. Achieving all of these at the pace and scale required may prove elusive in the current, highly challenging environment. The net-zero transition looks set to be even more disorderly across the globe than feared a year ago. Nevertheless, we believe that maintaining focus on the goal of a relatively more orderly transition is critical. This will require business leaders and policy makers to thoughtfully plan, design, innovate, and act in concert and with great urgency. Conversely, if these shifts were to be delayed or not carefully managed, the result would be a significantly less orderly transition that would cost considerably more and entail much greater environmental damage.

Modeled scenarios underlying our analyses

For the purpose of this article, a more orderly transition pathway has been modeled as a scenario in which the United States achieves its stated commitments of a 50 to 52 percent reduction (from 2005 levels) in economy-wide greenhouse-gas (GHG) emissions by 2030 and 100 percent carbon-free electricity by 2035. We call this the “Achieved Commitments” scenario. 1 The Achieved Commitments scenario is modeled by the McKinsey Global Energy Perspective and McKinsey Power Solutions teams. Modeling is based on an economic optimization model to find the lowest-cost solution to achieve emissions trajectories and account for other constraints, such as 100 percent carbon-free electricity by 2035. For more information, see Global Energy Perspective 2022 , McKinsey, April 26, 2022. It is modeled to align with a global pathway that limits warming to about 1.7°C, which can still result in severe climate change impacts. Further action will be required to go beyond commitments and hold warming below 1.5°C.

We contrast the Achieved Commitments scenario with two other scenarios:

1. The Current Trajectory scenario, in which the current path of technology cost decline continues, though active policies remain insufficient to close the gap required to meet policy objectives. The Current Trajectory scenario is modeled to align with a global pathway that reaches 2.4°C of global warming.

2. A Delayed Trajectory scenario, in which the United States continues on the Current Trajectory until 2030 and then needs to “catch up” to achieve the same cumulative GHG emissions as the Achieved Commitments scenario by 2050. Under the Delayed Trajectory scenario, the United States must both accelerate deployment of clean technologies after 2030 and invest in abatement technologies such as direct air capture to negate earlier emissions.

We have identified six action areas that we believe are critical to enabling a more orderly net-zero transition. Such a transition includes near-term emissions reductions that would rapidly put the United States on a 1.5° pathway while remaining cognizant of affordability, reliability, resiliency, and security (see sidebar “Modeled scenarios underlying our analyses”). Such imperatives must be balanced with the need to maintain a resilient energy supply and to enable a least-cost pathway with equitably distributed economic growth opportunities. Although the actions we set out here will likely not be sufficient, they constitute, in our view, the necessary bedrock for this transformation and take priority at this stage:

  • designing and deploying a capital-efficient and affordable system
  • strengthening supply chains to provide stable access to raw materials, components, and skilled labor
  • securing access to adequate land with high load factors for the deployment of renewables while taking into account the needs of local communities
  • reforming transmission development to include proactive planning, fast-track permitting, and systematic consideration of transmission alternatives
  • creating market mechanisms for expanding firm capacity to ensure reliable and adequate clean-energy supply
  • accelerating technological innovation to ensure timely deployment of new clean technologies

Designing and deploying a capital-efficient and affordable system

Historically, energy sector spending has focused on ongoing fuel costs, but these costs are expected to be cut in half by 2050 as the system shifts toward renewables. By contrast, energy sector transition spending will have to focus on capital investments—for example, to deploy more renewable-energy facilities and boost electric-grid capacity. We estimate the energy transition could potentially require more than $500 billion in additional capital for generation, transmission, and distribution through 2030 in the United States.

Given the magnitude of this investment, making efficient use of capital will be critical. Businesses and policy makers will need to target capital expenses with a laser focus to mitigate the affordability challenges that end customers will face. Three key priorities would enable such a focus:

1. Plan investments for long-term decarbonization. Given the longevity of power infrastructure, customers would bear the costs over many decades. Getting long-term planning right today is critical to managing costs through the 2040s and 2050s. System planners and electric and gas utilities would gain from immediately adopting resource planning that is cross-sectoral and incorporates emissions caps. As an example, effective decarbonization planning that integrates across gas and electric utilities could lead to a system that is at least 15 to 25 percent more cost-effective. 1 For more, see “ Decarbonizing US gas utilities: The potential role of a clean-fuels system in the energy transition ,” McKinsey, March 2, 2022.

2. Deploy capital more cost effectively. Capital efficiency is more critical than ever today, especially in the context of steep inflation and supply chain challenges. Renewables developers, for example, have lowered capital expenditures by 10 to 20 percent through measures such as design-to-cost analysis, clean sheet–based negotiation, schedule optimization, and lean and digitalized construction. To motivate these and other cost-saving measures, the government and regulators could adjust incentives for utilities through performance-based measures or evaluation of a utility’s total expenditure.

3. Empower and educate customers to manage rising rates. Utilities and other energy companies can put in place programs to help their customers understand, prepare for, and adapt to potential changes. A key step would be to focus on rate-design options targeting lower-income households and other consumers who would be most affected by energy transition costs. Companies can also develop tools that encourage cost-effective demand-side management and distributed energy resources (DERs) where sensible for the system and the customer.

Strengthening supply chains to provide stable access to raw materials, components, and skilled labor

Supply chains, already under stress, will likely be stretched further as demand for materials, manufacturing, and labor scales not only in the United States but also globally, with many countries ratcheting up commitments. Companies would need to act in three main areas:

1. Secure availability of raw materials. To ensure the steady availability of raw materials and other resources that are critical to the energy transition, private-sector companies can commit to long-term supply agreements. Where those are insufficient, companies can innovate to reduce material constraints in four ways: innovating to increase supply; applying advanced analytics in mining and processing; reducing demand by developing alternative materials that are less constrained—boosting efficiency without increasing material usage—and by developing recycling processes and capacity; and proactively plan for constraints. 2 For more on proactive supply chain solutions, see “ Supply chains: To build resilience, manage proactively ,” McKinsey, May 23, 2022.

2. Scale up resilient manufacturing. Companies can focus research and development on innovation for domestic production capabilities and use artificial intelligence to create optimized, flexible sourcing plans to scale up resilient manufacturing. For example, one global renewables developer is building a domestic, automated manufacturing facility to mitigate supply chain risk. While it will likely result in a near-term price increase, the risk reduction could pay off by minimizing project delays that result from supply chain issues.

3. Develop and acquire talent. With more than 550,000 new energy transition job opportunities in the United States expected by 2030, workforce gaps could delay execution at pace. To solve this, companies can tap into talent pools from fossil-fuel industries. In many instances, these workers have skills that are transferable to the jobs required for the energy transition, potentially filling 10 percent of the overall openings. To fill the remaining gap, companies could adopt more inclusive hiring practices, such as shifting to skills-based rather than credential-based hiring. Companies can also facilitate upskilling and reskilling through vocational schools and on-the-job training programs. This training and development are needed for the energy transition, but also facilitate the creation of good jobs.

The government can also support the scaling of resilient supply chains by developing a robust, multiyear national resource strategy to secure access to rare-earth materials, provide incentives to onshore manufacturing, and dedicate funding for training and vocational programs.

Securing access to adequate land with high load factors for the deployment of renewables

If the 2030 goals set by the US government are to be met, about 75 percent of all land with strong potential for renewables (that is, having a capacity factor in the 95th percentile or higher) and proximity to transmission lines would need to be developed for either solar or onshore wind power generation.

On the regional level, some areas—particularly the Northeast—have insufficient high-quality land to cost effectively produce all their renewables locally. These areas will have to rely on improved transmission or alternative technologies such as offshore wind, as described below.

Land for the development of renewables could be used more efficiently—for example, with improved solar and wind technology that is more efficient and therefore requires less land for the same power output. To address siting challenges, including community concerns, that could limit access to high-quality land, developers could share the economic value of high-quality land with owners and local communities. Communities that have recently experienced economic shifts could particularly benefit from the jobs and economic development, enabling a win–win situation for the developer and the community if value is appropriately distributed.

Reforming transmission development to include proactive planning, fast-track permitting, and systematic consideration of transmission alternatives

Transmission is critical to achieving a more orderly energy transition, given its role in connecting communities to renewable power. A McKinsey analysis evaluating the current US transmission interconnection queue estimates that 175 gigawatts of renewables—or nearly 500,000 gigawatt-hours of zero-carbon electricity each year—could be unsupplied if interconnection is not accelerated.

The challenges associated with transmission buildout in the United States have been widely analyzed, and some proposed solutions are being piloted or deployed. 3 Transmission planning for the 21st century: Proven practices that increase value and reduce costs , The Brattle Group and Grid Strategies, October 2021. Most remain far from being realized, however, despite a number of attempts at transmission reform over the past decades.

To continue and accelerate the policy discussions and planning reforms that are under way, addressing three core planning issues will likely prove critical: the evaluation of diverse value streams unlocked by transmission; cost and benefit allocation across jurisdictions; and permitting and siting challenges.

However, given that these issues have proven hard to tackle in the past, it is prudent for businesses and governments to plan for alternative options in the event that the transmission gridlock does not get resolved. There are three ways to diversify transmission:

1. Deploy DERs. Companies, system planners, and policy makers could enable and offer incentives for the deployment of DERs—including distributed solar and storage, as well as demand-side management and energy efficiency—to create local capacity.

2. Optimize electric transmission with the existing gas network. System planners and utilities could use the existing gas network to manage winter peaks and lower transmission capacity needs while reducing overall gas throughput and transitioning to zero-carbon molecules.

3. Transition to dispatchable zero-carbon resources. In places where transmission buildout to connect renewables to population centers does not materialize, system planners and companies could transition to dispatchable zero-carbon resources—for instance, offshore wind, the combustion of zero-carbon fuels (such as renewable natural gas, synthetic natural gas, or hydrogen), nuclear power, and long-duration energy storage—that can be sited closer to population centers.

Creating market mechanisms for expanding firm capacity to ensure reliable and adequate clean-energy supply

About 80 percent of today’s power system is made up of flexible power sources such as natural-gas plants that can ramp up and down quickly to meet sudden shifts in supply or demand. But as penetration of intermittent renewables increases, lack of flexible resources will likely become a risk to system reliability. To mitigate this risk, system planners, utilities, generators, and policy makers should collaborate through data sharing, simulation planning, and stakeholder engagement to establish and implement the market mechanisms needed.

System planners can evolve market mechanisms to incentivize sufficient flexible resources in three ways:

1. Revise methodology for resource planning to avoid overstating firm capacity. Today, most capacity markets allow some share of a renewable plant’s power to count as “firm” power that can be called upon when the system is in need. However, given renewables’ intermittency, they cannot reliably deliver in every instance. In most capacity markets, renewables’ stated flexibility should be adjusted to reflect this reality. This issue is not limited to renewables; system planners could also carefully assess other resources to reduce the risk that firm capacity is overstated.

2. Expand forecasting to account for changing supply and demand, particularly as climate shifts. Under a 2.0°C degree warming scenario in Texas and California, the number of yearly heat waves would increase by about 20 to 30 percent. More frequent extreme weather events result in three system problems: power generation can decline (for example, solar panels operate at lower efficiency in heat); demand can spike (for instance, increased demand for air conditioning); and if the weather event affects an entire region, energy imports from nearby can become unavailable. Given these shifts, system planners would need to forecast more conservatively rather than relying on historical trends.

3. Provide adequate incentives to flexible power sources that can generate power for long periods of time. As an example, during a week of low wind in February in a northern region, the system would be put in a bind by electrified heating and limited solar output, coupled with an occasionally expected “drought” of wind power. During such periods, the power system will require resources that are not energy or duration limited. Regulators can consider policies that avoid incentivizing a single threshold, such as by creating mechanisms that auction capacity in tranches of duration.

Accelerating technological innovation to ensure timely deployment of new clean technologies

Historically, clean technologies have come onto the grid over several decades, from initial small-scale deployment to broad commercial deployment. For example, offshore wind took 25 years to progress from the first commercial demonstration in Europe to starting to scale in the United States. Such a timescale is too slow to develop and deploy the newer technologies that would be needed to affordably meet 2030 decarbonization goals.

This is the case with wave power, for example, which offers an attractive load profile that mitigates some of the challenges of renewables intermittency and that can be sited near population centers on the coast or placed alongside offshore wind farms. The first commercial contracts for this technology were recently signed in Europe. Other innovative technologies that could solve energy transition challenges include perovskite solar cells to reduce the cost of solar; long-duration energy storage to provide grid reliability; small modular reactors to enable zero-carbon baseload power; and direct air capture to reduce carbon. Businesses and policy makers would benefit from considering three key priorities to accelerate technological innovation: investing to reduce risk, providing long-term market and regulatory clarity, and investing in the shared infrastructure needed to scale.

The time to act

The United States’ accelerating momentum toward an energy transition puts it, at long last, on a path to achieving necessary decarbonization, even though the short-term global headwinds cannot be ignored. If carefully planned and executed—with attention to socioeconomic impacts and affordability concerns; supply chain, transmission, and land constraints; technological innovation; and enabling market mechanisms—the United States can make marked progress toward a relatively more orderly energy transition. Equally important, it could do so through a path that creates new economic opportunities for individuals, communities, and companies and that sets the tone on a global scale.

Gracie Brown is an associate partner in McKinsey’s San Francisco office; Blake Houghton is a partner in the Dallas office; Jesse Noffsinger is a partner in the Seattle office; and  Hamid Samandari and Humayun Tai are senior partners in the New York office.

The authors wish to thank Roman Belotserkovskiy, Suzane de Sá, Nikhil Patel, Pascal Smulders, and Lindsey Waller for their contributions to this article.

This article was edited by Max Berley, a senior editor in the Washington, DC, office.

Explore a career with us

Related articles.

Illuminated outline of countries on earth from outer space

The energy transition: A region-by-region agenda for near-term action

Map of the world designed in flowers

The net-zero transition: What it would cost, what it could bring

Solving the net-zero equation: Nine requirements for a more orderly transition

Solving the net-zero equation: Nine requirements for a more orderly transition

American Psychological Association

How to cite ChatGPT

Timothy McAdoo

Use discount code STYLEBLOG15 for 15% off APA Style print products with free shipping in the United States.

We, the APA Style team, are not robots. We can all pass a CAPTCHA test , and we know our roles in a Turing test . And, like so many nonrobot human beings this year, we’ve spent a fair amount of time reading, learning, and thinking about issues related to large language models, artificial intelligence (AI), AI-generated text, and specifically ChatGPT . We’ve also been gathering opinions and feedback about the use and citation of ChatGPT. Thank you to everyone who has contributed and shared ideas, opinions, research, and feedback.

In this post, I discuss situations where students and researchers use ChatGPT to create text and to facilitate their research, not to write the full text of their paper or manuscript. We know instructors have differing opinions about how or even whether students should use ChatGPT, and we’ll be continuing to collect feedback about instructor and student questions. As always, defer to instructor guidelines when writing student papers. For more about guidelines and policies about student and author use of ChatGPT, see the last section of this post.

Quoting or reproducing the text created by ChatGPT in your paper

If you’ve used ChatGPT or other AI tools in your research, describe how you used the tool in your Method section or in a comparable section of your paper. For literature reviews or other types of essays or response or reaction papers, you might describe how you used the tool in your introduction. In your text, provide the prompt you used and then any portion of the relevant text that was generated in response.

Unfortunately, the results of a ChatGPT “chat” are not retrievable by other readers, and although nonretrievable data or quotations in APA Style papers are usually cited as personal communications , with ChatGPT-generated text there is no person communicating. Quoting ChatGPT’s text from a chat session is therefore more like sharing an algorithm’s output; thus, credit the author of the algorithm with a reference list entry and the corresponding in-text citation.

When prompted with “Is the left brain right brain divide real or a metaphor?” the ChatGPT-generated text indicated that although the two brain hemispheres are somewhat specialized, “the notation that people can be characterized as ‘left-brained’ or ‘right-brained’ is considered to be an oversimplification and a popular myth” (OpenAI, 2023).

OpenAI. (2023). ChatGPT (Mar 14 version) [Large language model]. https://chat.openai.com/chat

You may also put the full text of long responses from ChatGPT in an appendix of your paper or in online supplemental materials, so readers have access to the exact text that was generated. It is particularly important to document the exact text created because ChatGPT will generate a unique response in each chat session, even if given the same prompt. If you create appendices or supplemental materials, remember that each should be called out at least once in the body of your APA Style paper.

When given a follow-up prompt of “What is a more accurate representation?” the ChatGPT-generated text indicated that “different brain regions work together to support various cognitive processes” and “the functional specialization of different regions can change in response to experience and environmental factors” (OpenAI, 2023; see Appendix A for the full transcript).

Creating a reference to ChatGPT or other AI models and software

The in-text citations and references above are adapted from the reference template for software in Section 10.10 of the Publication Manual (American Psychological Association, 2020, Chapter 10). Although here we focus on ChatGPT, because these guidelines are based on the software template, they can be adapted to note the use of other large language models (e.g., Bard), algorithms, and similar software.

The reference and in-text citations for ChatGPT are formatted as follows:

  • Parenthetical citation: (OpenAI, 2023)
  • Narrative citation: OpenAI (2023)

Let’s break that reference down and look at the four elements (author, date, title, and source):

Author: The author of the model is OpenAI.

Date: The date is the year of the version you used. Following the template in Section 10.10, you need to include only the year, not the exact date. The version number provides the specific date information a reader might need.

Title: The name of the model is “ChatGPT,” so that serves as the title and is italicized in your reference, as shown in the template. Although OpenAI labels unique iterations (i.e., ChatGPT-3, ChatGPT-4), they are using “ChatGPT” as the general name of the model, with updates identified with version numbers.

The version number is included after the title in parentheses. The format for the version number in ChatGPT references includes the date because that is how OpenAI is labeling the versions. Different large language models or software might use different version numbering; use the version number in the format the author or publisher provides, which may be a numbering system (e.g., Version 2.0) or other methods.

Bracketed text is used in references for additional descriptions when they are needed to help a reader understand what’s being cited. References for a number of common sources, such as journal articles and books, do not include bracketed descriptions, but things outside of the typical peer-reviewed system often do. In the case of a reference for ChatGPT, provide the descriptor “Large language model” in square brackets. OpenAI describes ChatGPT-4 as a “large multimodal model,” so that description may be provided instead if you are using ChatGPT-4. Later versions and software or models from other companies may need different descriptions, based on how the publishers describe the model. The goal of the bracketed text is to briefly describe the kind of model to your reader.

Source: When the publisher name and the author name are the same, do not repeat the publisher name in the source element of the reference, and move directly to the URL. This is the case for ChatGPT. The URL for ChatGPT is https://chat.openai.com/chat . For other models or products for which you may create a reference, use the URL that links as directly as possible to the source (i.e., the page where you can access the model, not the publisher’s homepage).

Other questions about citing ChatGPT

You may have noticed the confidence with which ChatGPT described the ideas of brain lateralization and how the brain operates, without citing any sources. I asked for a list of sources to support those claims and ChatGPT provided five references—four of which I was able to find online. The fifth does not seem to be a real article; the digital object identifier given for that reference belongs to a different article, and I was not able to find any article with the authors, date, title, and source details that ChatGPT provided. Authors using ChatGPT or similar AI tools for research should consider making this scrutiny of the primary sources a standard process. If the sources are real, accurate, and relevant, it may be better to read those original sources to learn from that research and paraphrase or quote from those articles, as applicable, than to use the model’s interpretation of them.

We’ve also received a number of other questions about ChatGPT. Should students be allowed to use it? What guidelines should instructors create for students using AI? Does using AI-generated text constitute plagiarism? Should authors who use ChatGPT credit ChatGPT or OpenAI in their byline? What are the copyright implications ?

On these questions, researchers, editors, instructors, and others are actively debating and creating parameters and guidelines. Many of you have sent us feedback, and we encourage you to continue to do so in the comments below. We will also study the policies and procedures being established by instructors, publishers, and academic institutions, with a goal of creating guidelines that reflect the many real-world applications of AI-generated text.

For questions about manuscript byline credit, plagiarism, and related ChatGPT and AI topics, the APA Style team is seeking the recommendations of APA Journals editors. APA Style guidelines based on those recommendations will be posted on this blog and on the APA Style site later this year.

Update: APA Journals has published policies on the use of generative AI in scholarly materials .

We, the APA Style team humans, appreciate your patience as we navigate these unique challenges and new ways of thinking about how authors, researchers, and students learn, write, and work with new technologies.

American Psychological Association. (2020). Publication manual of the American Psychological Association (7th ed.). https://doi.org/10.1037/0000165-000

Related and recent

Comments are disabled due to your privacy settings. To re-enable, please adjust your cookie preferences.

APA Style Monthly

Subscribe to the APA Style Monthly newsletter to get tips, updates, and resources delivered directly to your inbox.

Welcome! Thank you for subscribing.

APA Style Guidelines

Browse APA Style writing guidelines by category

  • Abbreviations
  • Bias-Free Language
  • Capitalization
  • In-Text Citations
  • Italics and Quotation Marks
  • Paper Format
  • Punctuation
  • Research and Publication
  • Spelling and Hyphenation
  • Tables and Figures

Full index of topics

COMMENTS

  1. What is Critical Thinking, and what are its elements

    Critical thinking is the process of making clear reasoned judgements. Elements of critical thinking. There are three elements that aid in critical thinking, and another three that obstruct critical thinking. Logical reasoning: You would not expect an accountant to draw up a balance sheet without the knowledge of the debit/credit system. However ...

  2. Basic Elements of Critical Thinking

    A set of information and beliefs, generating and processing skills, and the habit of using those skills to guide behavior. Critical thinkers: Ask questions. Gather relevant information. Think through solutions and conclusions. Consider alternative systems of thought. Communicate effectively.

  3. PDF Components of Critical Thinking

    WHAT IS THINKING? •"Thinking is any mental activity that helps formulate or solve a problem, make a decision, or fulfill a desire to understand. It is a search for answers, a reaching for meaning"(Ruggerio) "What we think, we become." ~Buddha

  4. Elements of critical thinking

    The critical thinking process has three key elements. analyse, evaluate and ; synthesise. Analyse; Evaluate; Synthesise; Analyse. Definition. Identify the parts of an argument. ... Elements of critical thinking ; Exercise - elements of critical thinking; Additional resources; Connect with the Ask the Library Service.

  5. Elements of Critical Thinking

    Elements of Critical Thinking. Identification of premises and conclusions . Critical thinkers break arguments into basic statements and draw logical implications. Clarification of arguments: Critical thinkers locate ambiguity and vagueness in arguments and propositions. Establishment of facts : Critical thinkers determine if the premises are ...

  6. Critical Thinking

    Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms for thinking ...

  7. The 8 Elements of Critical Thinking

    Stanford Encyclopedia of Philosophy outlined 11 components of the critical thinking process: observing, feeling, wondering, imagining, inferring, knowledge, consulting, identifying, judging, and deciding. I adapted Stanford's categorisation of the elements of critical thinking and synthesized them into 8 key elements: 1- Observing.

  8. Paul-Elder Critical Thinking Framework

    The "parts" or elements of thinking are as follows: All reasoning has a purpose; All reasoning is an attempt to figure something out, to settle some question, ... Good critical thinking requires having a command of these standards. According to Paul and Elder (1997 ,2006), the ultimate goal is for the standards of reasoning to become infused in ...

  9. Defining Critical Thinking

    Critical thinking is, in short, self-directed, self-disciplined, self-monitored, and self-corrective thinking. It presupposes assent to rigorous standards of excellence and mindful command of their use. It entails effective communication and problem solving abilities and a commitment to overcome our native egocentrism and sociocentrism.

  10. Critical thinking

    Critical thinking is the analysis of available facts, evidence, observations, and arguments in order to form a judgement by the application of rational, skeptical, and unbiased analyses and evaluation. [1] The application of critical thinking includes self-directed, self-disciplined, self-monitored, and self-corrective habits of the mind; [2] thus, a critical thinker is a person who practices ...

  11. What Are Critical Thinking Skills and Why Are They Important?

    It makes you a well-rounded individual, one who has looked at all of their options and possible solutions before making a choice. According to the University of the People in California, having critical thinking skills is important because they are [ 1 ]: Universal. Crucial for the economy. Essential for improving language and presentation skills.

  12. What is Critical Thinking?

    Critical thinking is the intellectually disciplined process of actively and skillfully conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication, as a guide to belief and action. Paul and Scriven go on to suggest that ...

  13. What is Critical Thinking?

    Critical thinking requires us to get into our mind, or the mind of someone else, to understand their reasoning. To do this, we need imagination. So, just as art reflects how an artist looks at the world, critical thinking helps us understand how someone's thinking or actions reflects how they see the world. ANALYZING We think all the time ...

  14. What Is Critical Thinking?

    Critical thinking is the ability to effectively analyze information and form a judgment. To think critically, you must be aware of your own biases and assumptions when encountering information, and apply consistent standards when evaluating sources. Critical thinking skills help you to: Identify credible sources. Evaluate and respond to arguments.

  15. What is critical thinking?

    Critical thinking is a kind of thinking in which you question, analyse, interpret , evaluate and make a judgement about what you read, hear, say, or write. The term critical comes from the Greek word kritikos meaning "able to judge or discern". Good critical thinking is about making reliable judgements based on reliable information.

  16. Critical Thinking: Where to Begin

    A Brief Definition: Critical thinking is the art of analyzing and evaluating thinking with a view to improving it. A well-cultivated critical thinker: communicates effectively with others in figuring out solutions to complex problems. Critical thinking is, in short, self-directed, self-disciplined, self-monitored, and self-corrective thinking.

  17. The Seven Key Steps Of Critical Thinking

    He said, "The ability to think critically, as conceived in this volume, involves three things: 1. An attitude of being disposed to consider in a thoughtful way the problems and subjects that ...

  18. The Elements of Reasoning and the Intellectual Sta

    There are many standards appropriate to the assessment of thinking as it might occur in this or that context, but some standards are virtually universal (that is, applicable to all thinking): clarity, precision, accuracy, relevance, depth, breadth, and logic. How well a student is reasoning depends on how well he/she applies these universal ...

  19. 10 Elements Of Critical Thinking

    Developing Your Critical Thinking 1. Think Creatively "Curiosity is the key to creativity," said Akio Morita, founder of Sony. Cultivate your creativity by exploring the unknown and the ambiguous.

  20. Elements of Reasoning within Critical Thinking

    Critical thinking is the key… In this article, we look at different critical thinking techniques to analyze information with confidence and avoid making snap judgments. We'll break down the key elements - assumptions, evidence, and even hidden fallacies - that can confuse you or lead to mistakes. Let's begin!

  21. Critical Thinking: 5 Components and Its Assessment

    Critical thinking includes specific components such as analysis, interpretation, inference, explanation, and self-regulation. 1. Analysis . This involves examining information in detail in order to understand it better and to draw conclusions. It could be data, a concept, or a process. Analysis is a key component of critical thinking.

  22. Using Critical Thinking in Essays and other Assignments

    Critical thinking, as described by Oxford Languages, is the objective analysis and evaluation of an issue in order to form a judgement. Active and skillful approach, evaluation, assessment, synthesis, and/or evaluation of information obtained from, or made by, observation, knowledge, reflection, acumen or conversation, as a guide to belief and action, requires the critical thinking process ...

  23. Critical thinking in the digital age of AI: Information literacy is key

    There is an urgent need to promote greater critical thinking among young people, to give them the tools to detect what information is authentic and what has been manipulated. Information literacy, specifically across digital platforms, should be a mandatory part of every K-12 curriculum, to combat the rise of disinformation and develop more ...

  24. PDF The Miniature Guide to Critical Thinking: Concepts & Tools

    The essence of critical thinking concepts and tools distilled into a 20-page pocket-size guide. It is a critical thinking supplement to any textbook or course. It is best used in conjunction with the Analytic Thinking Guide. Keywords: critical thinking concepts; critical thinking tools; analytic thinking; thinker's guide Created Date

  25. This 1 Uncomfortable Practice Can Help You Beat the Competition

    Independent thinking involves encouraging team members to share their ideas without being influenced by the group, preventing groupthink.; Autonomy allows individuals the freedom to reach their ...

  26. What Kamala Harris has said so far on key issues in her campaign

    The vice president's platform will likely be in the same vein as that of President Joe Biden, but Harris is expected to put her own stamp and style on matters ranging from abortion to the ...

  27. Blog Post

    This spring, ARPA-E awardee University of Alaska Fairbanks (UAF) set out to study critical minerals accumulating in wild seaweed in a remote corner of Alaska. The project is just one of ARPA-E's ongoing awards to investigate algal mining, a transformative research area using the natural hyperaccumulating ability of seaweed to naturally concentrate rare earth elements from seawater.Securing ...

  28. US energy decarbonization: Six key action areas

    We have identified six action areas that we believe are critical to enabling a more orderly net-zero transition. Such a transition includes near-term emissions reductions that would rapidly put the United States on a 1.5° pathway while remaining cognizant of affordability, reliability, resiliency, and security (see sidebar "Modeled scenarios underlying our analyses").

  29. How to cite ChatGPT

    We, the APA Style team, are not robots. We can all pass a CAPTCHA test, and we know our roles in a Turing test.And, like so many nonrobot human beings this year, we've spent a fair amount of time reading, learning, and thinking about issues related to large language models, artificial intelligence (AI), AI-generated text, and specifically ChatGPT.