How to Conceptualize a Research Project

  • First Online: 01 January 2013

Cite this chapter

research project definition and concept

  • Shaili Jain M.D. 2 , 3 ,
  • Steven E. Lindley MD, PhD 2 , 3 &
  • Craig S. Rosen PhD 2 , 3 , 4  

3506 Accesses

1 Citations

The research process has three phases: the conceptual phase, the empirical phase, and the interpretative phase. In this chapter, we focus on the first phase: the conceptual phase—the part of the research process that determines which questions are to be addressed by the research and how research procedures are to be used as tools in finding the answers to these questions. Here we describe the various components of the conceptualization phase that need to be carefully considered before moving on to the empirical and interpretative phases of the research. Conceptualization involves simultaneously bringing together several considerations to identify a good research idea, i.e., an answerable research question that is worth answering. Components of this process include conducting a thorough search of the peer-reviewed literature, finding a research mentor and other collaborators, considering methodology and study design, and assessing feasibility. It should be noted that although we describe these various components in a linear fashion in the text, in reality, the conceptualization phase is not a linear process and will require consideration of these components to varying degrees at various stages depending upon evolving circumstances and the reader’s unique strengths and weaknesses. Even though careful attention to all these components will require considerable time and effort on the part of the physician scientist, we consider this to be time well spent as it will lay the ground for a successful research endeavor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

research project definition and concept

The Roadmap to Research: Fundamentals of a Multifaceted Research Process

research project definition and concept

Designing a Research Question

Rose AM. Sociology: the study of human relations, 2nd ed. New York, NY: Alfred A. Knopf; 1965, p. 9

Google Scholar  

Batey MV. Conceptualizing the research process. Nurs Res. 1971;20:296–301.

Article   PubMed   CAS   Google Scholar  

Sambunjak D, Straus SE, Marušic´ A. Mentoring in academic medicine: a systematic review. JAMA. 2006;296:1103–15.

Horn C, Plazas Snyder B, Coverdale JH, et al. Weiss Roberts L: educational research questions and study design. Acad Psychiatry. 2009;33:261–7.

Article   PubMed   Google Scholar  

Additional Resources

Chapters 8, 10, 19, 20, and 24. In: Roberts LW, Hilty D, editors. Handbook of career development in academic psychiatry and behavioral sciences, 1st ed. Arlington, VA: American Psychiatric Publishing, Inc.; 2006.

Hulley SB, Cumming CR, Warren S, et al. Designing clinical research. 3rd ed. Philadelphia, PA, USA: Lippincott Williams & Wilkins; 2007.

Kraemer HC, Kraemer KL, Kupfer DJ. To your health: how to understand what research tells us about risk. New York: Oxford University Press; 2005.

Motulsky H. Intuitive biostatistics: a nonmathematical guide to statistical thinking. New York: Oxford University Press; 2010.

Download references

Author information

Authors and affiliations.

VA Palo Alto Health Care System, National Center for Posttraumatic Stress Disorder, Menlo Park, CA, USA

Shaili Jain M.D., Steven E. Lindley MD, PhD & Craig S. Rosen PhD

Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA

VA Sierra-Pacific Mental Illness Research, Education and Clinical Center, Menlo Park, CA, USA

Craig S. Rosen PhD

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Shaili Jain M.D. .

Editor information

Editors and affiliations.

, Department of Psychiatry and Behavioral, Stanford University School of Medicine, 450 Serra Mall, Stanford, 94305, California, USA

Laura Weiss Roberts

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Jain, S., Lindley, S.E., Rosen, C.S. (2013). How to Conceptualize a Research Project. In: Roberts, L. (eds) The Academic Medicine Handbook. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5693-3_30

Download citation

DOI : https://doi.org/10.1007/978-1-4614-5693-3_30

Published : 22 February 2013

Publisher Name : Springer, New York, NY

Print ISBN : 978-1-4614-5692-6

Online ISBN : 978-1-4614-5693-3

eBook Packages : Medicine Medicine (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

TAA Abstract

The What: Defining a research project

During Academic Writing Month 2018, TAA hosted a series of #AcWriChat TweetChat events focused on the five W’s of academic writing. Throughout the series we explored The What: Defining a research project ; The Where: Constructing an effective writing environment ; The When: Setting realistic timeframes for your research ; The Who: Finding key sources in the existing literature ; and The Why: Explaining the significance of your research . This series of posts brings together the discussions and resources from those events. Let’s start with The What: Defining a research project .

Before moving forward on any academic writing effort, it is important to understand what the research project is intended to understand and document. In order to accomplish this, it’s also important to understand what a research project is. This is where we began our discussion of the five W’s of academic writing.

Q1: What constitutes a research project?

According to a Rutgers University resource titled, Definition of a research project and specifications for fulfilling the requirement , “A research project is a scientific endeavor to answer a research question.” Specifically, projects may take the form of “case series, case control study, cohort study, randomized, controlled trial, survey, or secondary data analysis such as decision analysis, cost effectiveness analysis or meta-analysis”.

Hampshire College offers that “Research is a process of systematic inquiry that entails collection of data; documentation of critical information; and analysis and interpretation of that data/information, in accordance with suitable methodologies set by specific professional fields and academic disciplines.” in their online resource titled, What is research? The resource also states that “Research is conducted to evaluate the validity of a hypothesis or an interpretive framework; to assemble a body of substantive knowledge and findings for sharing them in appropriate manners; and to generate questions for further inquiries.”

TweetChat participant @TheInfoSherpa , who is currently “investigating whether publishing in a predatory journal constitutes blatant research misconduct, inappropriate conduct, or questionable conduct,” summarized these ideas stating, “At its simplest, a research project is a project which seeks to answer a well-defined question or set of related questions about a specific topic.” TAA staff member, Eric Schmieder, added to the discussion that“a research project is a process by which answers to a significant question are attempted to be answered through exploration or experimentation.”

In a learning module focused on research and the application of the Scientific Method, the Office of Research Integrity within the U.S. Department of Health and Human Services states that “Research is a process to discover new knowledge…. No matter what topic is being studied, the value of the research depends on how well it is designed and done.”

Wenyi Ho of Penn State University states that “Research is a systematic inquiry to describe, explain, predict and control the observed phenomenon.” in an online resource which further shares four types of knowledge that research contributes to education, four types of research based on different purposes, and five stages of conducting a research study. Further understanding of research in definition, purpose, and typical research practices can be found in this Study.com video resource .

Now that we have a foundational understanding of what constitutes a research project, we shift the discussion to several questions about defining specific research topics.

Q2: When considering topics for a new research project, where do you start?

A guide from the University of Michigan-Flint on selecting a topic states, “Be aware that selecting a good topic may not be easy. It must be narrow and focused enough to be interesting, yet broad enough to find adequate information.”

Schmieder responded to the chat question with his approach.“I often start with an idea or question of interest to me and then begin searching for existing research on the topic to determine what has been done already.”

@TheInfoSherpa added, “Start with the research. Ask a librarian for help. The last thing you want to do is design a study thst someone’s already done.”

The Utah State University Libraries shared a video that “helps you find a research topic that is relevant and interesting to you!”

Q2a: What strategies do you use to stay current on research in your discipline?

The California State University Chancellor’s Doctoral Incentive Program Community Commons resource offers four suggestions for staying current in your field:

  • Become an effective consumer of research
  • Read key publications
  • Attend key gatherings
  • Develop a network of colleagues

Schmieder and @TheInfoSherpa discussed ways to use databases for this purpose. Schmieder identified using “journal database searches for publications in the past few months on topics of interest” as a way to stay current as a consumer of research.

@TheInfoSherpa added, “It’s so easy to set up an alert in your favorite database. I do this for specific topics, and all the latest research gets delivered right to my inbox. Again, your academic or public #librarian can help you with this.” To which Schmieder replied, “Alerts are such useful advancements in technology for sorting through the myriad of material available online. Great advice!”

In an open access article, Keeping Up to Date: An Academic Researcher’s Information Journey , researchers Pontis, et. al. “examined how researchers stay up to date, using the information journey model as a framework for analysis and investigating which dimensions influence information behaviors.” As a result of their study, “Five key dimensions that influence information behaviors were identified: level of seniority, information sources, state of the project, level of familiarity, and how well defined the relevant community is.”

Q3: When defining a research topic, do you tend to start with a broad idea or a specific research question?

In a collection of notes on where to start by Don Davis at Columbia University, Davis tells us “First, there is no ‘Right Topic.’”, adding that “Much more important is to find something that is important and genuinely interests you.”

Schmieder shared in the chat event, “I tend to get lost in the details while trying to save the world – not sure really where I start though. :O)” @TheInfoSherpa added, “Depends on the project. The important thing is being able to realize when your topic is too broad or too narrow and may need tweaking. I use the five Ws or PICO(T) to adjust my topic if it’s too broad or too narrow.”

In an online resource , The Writing Center at George Mason University identifies the following six steps to developing a research question, noting significance in that “the specificity of a well-developed research question helps writers avoid the ‘all-about’ paper and work toward supporting a specific, arguable thesis.”

  • Choose an interesting general topic
  • Do some preliminary research on your general topic
  • Consider your audience
  • Start asking questions
  • Evaluate your question
  • Begin your research

USC Libraries’ research guides offer eight strategies for narrowing the research topic : Aspect, Components, Methodology, Place, Relationship, Time, Type, or a Combination of the above.

Q4: What factors help to determine the realistic scope a research topic?

The scope of a research topic refers to the actual amount of research conducted as part of the study. Often the search strategies used in understanding previous research and knowledge on a topic will impact the scope of the current study. A resource from Indiana University offers both an activity for narrowing the search strategy when finding too much information on a topic and an activity for broadening the search strategy when too little information is found.

The Mayfield Handbook of Technical & Scientific Writing identifies scope as an element to be included in the problem statement. Further when discussing problem statements, this resource states, “If you are focusing on a problem, be sure to define and state it specifically enough that you can write about it. Avoid trying to investigate or write about multiple problems or about broad or overly ambitious problems. Vague problem definition leads to unsuccessful proposals and vague, unmanageable documents. Naming a topic is not the same as defining a problem.”

Schmieder identified in the chat several considerations when determining the scope of a research topic, namely “Time, money, interest and commitment, impact to self and others.” @TheInfoSherpa reiterated their use of PICO(T) stating, “PICO(T) is used in the health sciences, but it can be used to identify a manageable scope” and sharing a link to a Georgia Gwinnett College Research Guide on PICOT Questions .

By managing the scope of your research topic, you also define the limitations of your study. According to a USC Libraries’ Research Guide, “The limitations of the study are those characteristics of design or methodology that impacted or influenced the interpretation of the findings from your research.” Accepting limitations help maintain a manageable scope moving forward with the project.

Q5/5a: Do you generally conduct research alone or with collaborative authors? What benefits/challenges do collaborators add to the research project?

Despite noting that the majority of his research efforts have been solo, Schmieder did identify benefits to collaboration including “brainstorming, division of labor, speed of execution” and challenges of developing a shared vision, defining roles and responsibilities for the collaborators, and accepting a level of dependence on the others in the group.

In a resource on group writing from The Writing Center at the University of North Carolina at Chapel Hill, both advantages and pitfalls are discussed. Looking to the positive, this resource notes that “Writing in a group can have many benefits: multiple brains are better than one, both for generating ideas and for getting a job done.”

Yale University’s Office of the Provost has established, as part of its Academic Integrity policies, Guidance on Authorship in Scholarly or Scientific Publications to assist researchers in understanding authorship standards as well as attribution expectations.

In times when authorship turns sour , the University of California, San Francisco offers the following advice to reach a resolution among collaborative authors:

  • Address emotional issues directly
  • Elicit the problem author’s emotions
  • Acknowledge the problem author’s emotions
  • Express your own emotions as “I feel …”
  • Set boundaries
  • Try to find common ground
  • Get agreement on process
  • Involve a neutral third party

Q6: What other advice can you share about defining a research project?

Schmieder answered with question with personal advice to “Choose a topic of interest. If you aren’t interested in the topic, you will either not stay motivated to complete it or you will be miserable in the process and not produce the best results from your efforts.”

For further guidance and advice, the following resources may prove useful:

  • 15 Steps to Good Research (Georgetown University Library)
  • Advice for Researchers and Students (Tao Xie and University of Illinois)
  • Develop a research statement for yourself (University of Pennsylvania)

Whatever your next research project, hopefully these tips and resources help you to define it in a way that leads to greater success and better writing.

Share this:

research project definition and concept

  • Share on Tumblr

Please note that all ​content on this site ​is copyrighted by the Textbook & Academic Authors Association (TAA). Individual articles may be re​posted and/or printed in non-commercial publications provided you include the byline​ (if applicable), the entire article without alterations, and this copyright notice: “© 202​4, Textbook & Academic Authors Association (TAA). Originally published ​on the TAA Blog, Abstrac t on [Date, Issue, Number].” A copy of the issue in which the article is reprinted​, or a link to the blog or online site, should be mailed to ​K​im Pawlak P.O. Box 3​37, ​C​ochrane, WI 5462​2 or ​K​im.Pawlak @taaonline.net.

research project definition and concept

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

The PMC website is updating on October 15, 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Pharmacol Pharmacother
  • v.4(2); Apr-Jun 2013

The critical steps for successful research: The research proposal and scientific writing: (A report on the pre-conference workshop held in conjunction with the 64 th annual conference of the Indian Pharmaceutical Congress-2012)

Pitchai balakumar.

Pharmacology Unit, Faculty of Pharmacy, AIMST University, Semeling, 08100 Bedong. Kedah Darul Aman, Malaysia

Mohammed Naseeruddin Inamdar

1 Department of Pharmacology, Al-Ameen College of Pharmacy, Bengaluru, Karnataka, India

Gowraganahalli Jagadeesh

2 Division of Cardiovascular and Renal Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, USA

An interactive workshop on ‘The Critical Steps for Successful Research: The Research Proposal and Scientific Writing’ was conducted in conjunction with the 64 th Annual Conference of the Indian Pharmaceutical Congress-2012 at Chennai, India. In essence, research is performed to enlighten our understanding of a contemporary issue relevant to the needs of society. To accomplish this, a researcher begins search for a novel topic based on purpose, creativity, critical thinking, and logic. This leads to the fundamental pieces of the research endeavor: Question, objective, hypothesis, experimental tools to test the hypothesis, methodology, and data analysis. When correctly performed, research should produce new knowledge. The four cornerstones of good research are the well-formulated protocol or proposal that is well executed, analyzed, discussed and concluded. This recent workshop educated researchers in the critical steps involved in the development of a scientific idea to its successful execution and eventual publication.

INTRODUCTION

Creativity and critical thinking are of particular importance in scientific research. Basically, research is original investigation undertaken to gain knowledge and understand concepts in major subject areas of specialization, and includes the generation of ideas and information leading to new or substantially improved scientific insights with relevance to the needs of society. Hence, the primary objective of research is to produce new knowledge. Research is both theoretical and empirical. It is theoretical because the starting point of scientific research is the conceptualization of a research topic and development of a research question and hypothesis. Research is empirical (practical) because all of the planned studies involve a series of observations, measurements, and analyses of data that are all based on proper experimental design.[ 1 – 9 ]

The subject of this report is to inform readers of the proceedings from a recent workshop organized by the 64 th Annual conference of the ‘ Indian Pharmaceutical Congress ’ at SRM University, Chennai, India, from 05 to 06 December 2012. The objectives of the workshop titled ‘The Critical Steps for Successful Research: The Research Proposal and Scientific Writing,’ were to assist participants in developing a strong fundamental understanding of how best to develop a research or study protocol, and communicate those research findings in a conference setting or scientific journal. Completing any research project requires meticulous planning, experimental design and execution, and compilation and publication of findings in the form of a research paper. All of these are often unfamiliar to naïve researchers; thus, the purpose of this workshop was to teach participants to master the critical steps involved in the development of an idea to its execution and eventual publication of the results (See the last section for a list of learning objectives).

THE STRUCTURE OF THE WORKSHOP

The two-day workshop was formatted to include key lectures and interactive breakout sessions that focused on protocol development in six subject areas of the pharmaceutical sciences. This was followed by sessions on scientific writing. DAY 1 taught the basic concepts of scientific research, including: (1) how to formulate a topic for research and to describe the what, why , and how of the protocol, (2) biomedical literature search and review, (3) study designs, statistical concepts, and result analyses, and (4) publication ethics. DAY 2 educated the attendees on the basic elements and logistics of writing a scientific paper and thesis, and preparation of poster as well as oral presentations.

The final phase of the workshop was the ‘Panel Discussion,’ including ‘Feedback/Comments’ by participants. There were thirteen distinguished speakers from India and abroad. Approximately 120 post-graduate and pre-doctoral students, young faculty members, and scientists representing industries attended the workshop from different parts of the country. All participants received a printed copy of the workshop manual and supporting materials on statistical analyses of data.

THE BASIC CONCEPTS OF RESEARCH: THE KEY TO GETTING STARTED IN RESEARCH

A research project generally comprises four key components: (1) writing a protocol, (2) performing experiments, (3) tabulating and analyzing data, and (4) writing a thesis or manuscript for publication.

Fundamentals in the research process

A protocol, whether experimental or clinical, serves as a navigator that evolves from a basic outline of the study plan to become a qualified research or grant proposal. It provides the structural support for the research. Dr. G. Jagadeesh (US FDA), the first speaker of the session, spoke on ‘ Fundamentals in research process and cornerstones of a research project .’ He discussed at length the developmental and structural processes in preparing a research protocol. A systematic and step-by-step approach is necessary in planning a study. Without a well-designed protocol, there would be a little chance for successful completion of a research project or an experiment.

Research topic

The first and the foremost difficult task in research is to identify a topic for investigation. The research topic is the keystone of the entire scientific enterprise. It begins the project, drives the entire study, and is crucial for moving the project forward. It dictates the remaining elements of the study [ Table 1 ] and thus, it should not be too narrow or too broad or unfocused. Because of these potential pitfalls, it is essential that a good or novel scientific idea be based on a sound concept. Creativity, critical thinking, and logic are required to generate new concepts and ideas in solving a research problem. Creativity involves critical thinking and is associated with generating many ideas. Critical thinking is analytical, judgmental, and involves evaluating choices before making a decision.[ 4 ] Thus, critical thinking is convergent type thinking that narrows and refines those divergent ideas and finally settles to one idea for an in-depth study. The idea on which a research project is built should be novel, appropriate to achieve within the existing conditions, and useful to the society at large. Therefore, creativity and critical thinking assist biomedical scientists in research that results in funding support, novel discovery, and publication.[ 1 , 4 ]

Elements of a study protocol

An external file that holds a picture, illustration, etc.
Object name is JPP-4-130-g001.jpg

Research question

The next most crucial aspect of a study protocol is identifying a research question. It should be a thought-provoking question. The question sets the framework. It emerges from the title, findings/results, and problems observed in previous studies. Thus, mastering the literature, attendance at conferences, and discussion in journal clubs/seminars are sources for developing research questions. Consider the following example in developing related research questions from the research topic.

Hepatoprotective activity of Terminalia arjuna and Apium graveolens on paracetamol-induced liver damage in albino rats.

How is paracetamol metabolized in the body? Does it involve P450 enzymes? How does paracetamol cause liver injury? What are the mechanisms by which drugs can alleviate liver damage? What biochemical parameters are indicative of liver injury? What major endogenous inflammatory molecules are involved in paracetamol-induced liver damage?

A research question is broken down into more precise objectives. The objectives lead to more precise methods and definition of key terms. The objectives should be SMART-Specific, Measurable, Achievable, Realistic, Time-framed,[ 10 ] and should cover the entire breadth of the project. The objectives are sometimes organized into hierarchies: Primary, secondary, and exploratory; or simply general and specific. Study the following example:

To evaluate the safety and tolerability of single oral doses of compound X in normal volunteers.

To assess the pharmacokinetic profile of compound X following single oral doses.

To evaluate the incidence of peripheral edema reported as an adverse event.

The objectives and research questions are then formulated into a workable or testable hypothesis. The latter forces us to think carefully about what comparisons will be needed to answer the research question, and establishes the format for applying statistical tests to interpret the results. The hypothesis should link a process to an existing or postulated biologic pathway. A hypothesis is written in a form that can yield measurable results. Studies that utilize statistics to compare groups of data should have a hypothesis. Consider the following example:

  • The hepatoprotective activity of Terminalia arjuna is superior to that of Apium graveolens against paracetamol-induced liver damage in albino rats.

All biological research, including discovery science, is hypothesis-driven. However, not all studies need be conducted with a hypothesis. For example, descriptive studies (e.g., describing characteristics of a plant, or a chemical compound) do not need a hypothesis.[ 1 ]

Relevance of the study

Another important section to be included in the protocol is ‘significance of the study.’ Its purpose is to justify the need for the research that is being proposed (e.g., development of a vaccine for a disease). In summary, the proposed study should demonstrate that it represents an advancement in understanding and that the eventual results will be meaningful, contribute to the field, and possibly even impact society.

Biomedical literature

A literature search may be defined as the process of examining published sources of information on a research or review topic, thesis, grant application, chemical, drug, disease, or clinical trial, etc. The quantity of information available in print or electronically (e.g., the internet) is immense and growing with time. A researcher should be familiar with the right kinds of databases and search engines to extract the needed information.[ 3 , 6 ]

Dr. P. Balakumar (Institute of Pharmacy, Rajendra Institute of Technology and Sciences, Sirsa, Haryana; currently, Faculty of Pharmacy, AIMST University, Malaysia) spoke on ‘ Biomedical literature: Searching, reviewing and referencing .’ He schematically explained the basis of scientific literature, designing a literature review, and searching literature. After an introduction to the genesis and diverse sources of scientific literature searches, the use of PubMed, one of the premier databases used for biomedical literature searches world-wide, was illustrated with examples and screenshots. Several companion databases and search engines are also used for finding information related to health sciences, and they include Embase, Web of Science, SciFinder, The Cochrane Library, International Pharmaceutical Abstracts, Scopus, and Google Scholar.[ 3 ] Literature searches using alternative interfaces for PubMed such as GoPubMed, Quertle, PubFocus, Pubget, and BibliMed were discussed. The participants were additionally informed of databases on chemistry, drugs and drug targets, clinical trials, toxicology, and laboratory animals (reviewed in ref[ 3 ]).

Referencing and bibliography are essential in scientific writing and publication.[ 7 ] Referencing systems are broadly classified into two major types, such as Parenthetical and Notation systems. Parenthetical referencing is also known as Harvard style of referencing, while Vancouver referencing style and ‘Footnote’ or ‘Endnote’ are placed under Notation referencing systems. The participants were educated on each referencing system with examples.

Bibliography management

Dr. Raj Rajasekaran (University of California at San Diego, CA, USA) enlightened the audience on ‘ bibliography management ’ using reference management software programs such as Reference Manager ® , Endnote ® , and Zotero ® for creating and formatting bibliographies while writing a manuscript for publication. The discussion focused on the use of bibliography management software in avoiding common mistakes such as incomplete references. Important steps in bibliography management, such as creating reference libraries/databases, searching for references using PubMed/Google scholar, selecting and transferring selected references into a library, inserting citations into a research article and formatting bibliographies, were presented. A demonstration of Zotero®, a freely available reference management program, included the salient features of the software, adding references from PubMed using PubMed ID, inserting citations and formatting using different styles.

Writing experimental protocols

The workshop systematically instructed the participants in writing ‘ experimental protocols ’ in six disciplines of Pharmaceutical Sciences.: (1) Pharmaceutical Chemistry (presented by Dr. P. V. Bharatam, NIPER, Mohali, Punjab); (2) Pharmacology (presented by Dr. G. Jagadeesh and Dr. P. Balakumar); (3) Pharmaceutics (presented by Dr. Jayant Khandare, Piramal Life Sciences, Mumbai); (4) Pharmacy Practice (presented by Dr. Shobha Hiremath, Al-Ameen College of Pharmacy, Bengaluru); (5) Pharmacognosy and Phytochemistry (presented by Dr. Salma Khanam, Al-Ameen College of Pharmacy, Bengaluru); and (6) Pharmaceutical Analysis (presented by Dr. Saranjit Singh, NIPER, Mohali, Punjab). The purpose of the research plan is to describe the what (Specific Aims/Objectives), why (Background and Significance), and how (Design and Methods) of the proposal.

The research plan should answer the following questions: (a) what do you intend to do; (b) what has already been done in general, and what have other researchers done in the field; (c) why is this worth doing; (d) how is it innovative; (e) what will this new work add to existing knowledge; and (f) how will the research be accomplished?

In general, the format used by the faculty in all subjects is shown in Table 2 .

Elements of a research protocol

An external file that holds a picture, illustration, etc.
Object name is JPP-4-130-g002.jpg

Biostatistics

Biostatistics is a key component of biomedical research. Highly reputed journals like The Lancet, BMJ, Journal of the American Medical Association, and many other biomedical journals include biostatisticians on their editorial board or reviewers list. This indicates that a great importance is given for learning and correctly employing appropriate statistical methods in biomedical research. The post-lunch session on day 1 of the workshop was largely committed to discussion on ‘ Basic biostatistics .’ Dr. R. Raveendran (JIPMER, Puducherry) and Dr. Avijit Hazra (PGIMER, Kolkata) reviewed, in parallel sessions, descriptive statistics, probability concepts, sample size calculation, choosing a statistical test, confidence intervals, hypothesis testing and ‘ P ’ values, parametric and non-parametric statistical tests, including analysis of variance (ANOVA), t tests, Chi-square test, type I and type II errors, correlation and regression, and summary statistics. This was followed by a practice and demonstration session. Statistics CD, compiled by Dr. Raveendran, was distributed to the participants before the session began and was demonstrated live. Both speakers worked on a variety of problems that involved both clinical and experimental data. They discussed through examples the experimental designs encountered in a variety of studies and statistical analyses performed for different types of data. For the benefit of readers, we have summarized statistical tests applied frequently for different experimental designs and post-hoc tests [ Figure 1 ].

An external file that holds a picture, illustration, etc.
Object name is JPP-4-130-g003.jpg

Conceptual framework for statistical analyses of data. Of the two kinds of variables, qualitative (categorical) and quantitative (numerical), qualitative variables (nominal or ordinal) are not normally distributed. Numerical data that come from normal distributions are analyzed using parametric tests, if not; the data are analyzed using non-parametric tests. The most popularly used Student's t -test compares the means of two populations, data for this test could be paired or unpaired. One-way analysis of variance (ANOVA) is used to compare the means of three or more independent populations that are normally distributed. Applying t test repeatedly in pair (multiple comparison), to compare the means of more than two populations, will increase the probability of type I error (false positive). In this case, for proper interpretation, we need to adjust the P values. Repeated measures ANOVA is used to compare the population means if more than two observations coming from same subject over time. The null hypothesis is rejected with a ‘ P ’ value of less than 0.05, and the difference in population means is considered to be statistically significant. Subsequently, appropriate post-hoc tests are used for pairwise comparisons of population means. Two-way or three-way ANOVA are considered if two (diet, dose) or three (diet, dose, strain) independent factors, respectively, are analyzed in an experiment (not described in the Figure). Categorical nominal unmatched variables (counts or frequencies) are analyzed by Chi-square test (not shown in the Figure)

Research and publication ethics

The legitimate pursuit of scientific creativity is unfortunately being marred by a simultaneous increase in scientific misconduct. A disproportionate share of allegations involves scientists of many countries, and even from respected laboratories. Misconduct destroys faith in science and scientists and creates a hierarchy of fraudsters. Investigating misconduct also steals valuable time and resources. In spite of these facts, most researchers are not aware of publication ethics.

Day 1 of the workshop ended with a presentation on ‘ research and publication ethics ’ by Dr. M. K. Unnikrishnan (College of Pharmaceutical Sciences, Manipal University, Manipal). He spoke on the essentials of publication ethics that included plagiarism (attempting to take credit of the work of others), self-plagiarism (multiple publications by an author on the same content of work with slightly different wordings), falsification (manipulation of research data and processes and omitting critical data or results), gift authorship (guest authorship), ghostwriting (someone other than the named author (s) makes a major contribution), salami publishing (publishing many papers, with minor differences, from the same study), and sabotage (distracting the research works of others to halt their research completion). Additionally, Dr. Unnikrishnan pointed out the ‘ Ingelfinger rule ’ of stipulating that a scientist must not submit the same original research in two different journals. He also advised the audience that authorship is not just credit for the work but also responsibility for scientific contents of a paper. Although some Indian Universities are instituting preventive measures (e.g., use of plagiarism detecting software, Shodhganga digital archiving of doctoral theses), Dr. Unnikrishnan argued for a great need to sensitize young researchers on the nature and implications of scientific misconduct. Finally, he discussed methods on how editors and peer reviewers should ethically conduct themselves while managing a manuscript for publication.

SCIENTIFIC COMMUNICATION: THE KEY TO SUCCESSFUL SELLING OF FINDINGS

Research outcomes are measured through quality publications. Scientists must not only ‘do’ science but must ‘write’ science. The story of the project must be told in a clear, simple language weaving in previous work done in the field, answering the research question, and addressing the hypothesis set forth at the beginning of the study. Scientific publication is an organic process of planning, researching, drafting, revising, and updating the current knowledge for future perspectives. Writing a research paper is no easier than the research itself. The lectures of Day 2 of the workshop dealt with the basic elements and logistics of writing a scientific paper.

An overview of paper structure and thesis writing

Dr. Amitabh Prakash (Adis, Auckland, New Zealand) spoke on ‘ Learning how to write a good scientific paper .’ His presentation described the essential components of an original research paper and thesis (e.g., introduction, methods, results, and discussion [IMRaD]) and provided guidance on the correct order, in which data should appear within these sections. The characteristics of a good abstract and title and the creation of appropriate key words were discussed. Dr. Prakash suggested that the ‘title of a paper’ might perhaps have a chance to make a good impression, and the title might be either indicative (title that gives the purpose of the study) or declarative (title that gives the study conclusion). He also suggested that an abstract is a succinct summary of a research paper, and it should be specific, clear, and concise, and should have IMRaD structure in brief, followed by key words. Selection of appropriate papers to be cited in the reference list was also discussed. Various unethical authorships were enumerated, and ‘The International Committee of Medical Journal Editors (ICMJE) criteria for authorship’ was explained ( http://www.icmje.org/ethical_1author.html ; also see Table 1 in reference #9). The session highlighted the need for transparency in medical publication and provided a clear description of items that needed to be included in the ‘Disclosures’ section (e.g., sources of funding for the study and potential conflicts of interest of all authors, etc.) and ‘Acknowledgements’ section (e.g., writing assistance and input from all individuals who did not meet the authorship criteria). The final part of the presentation was devoted to thesis writing, and Dr. Prakash provided the audience with a list of common mistakes that are frequently encountered when writing a manuscript.

The backbone of a study is description of results through Text, Tables, and Figures. Dr. S. B. Deshpande (Institute of Medical Sciences, Banaras Hindu University, Varanasi, India) spoke on ‘ Effective Presentation of Results .’ The Results section deals with the observations made by the authors and thus, is not hypothetical. This section is subdivided into three segments, that is, descriptive form of the Text, providing numerical data in Tables, and visualizing the observations in Graphs or Figures. All these are arranged in a sequential order to address the question hypothesized in the Introduction. The description in Text provides clear content of the findings highlighting the observations. It should not be the repetition of facts in tables or graphs. Tables are used to summarize or emphasize descriptive content in the text or to present the numerical data that are unrelated. Illustrations should be used when the evidence bearing on the conclusions of a paper cannot be adequately presented in a written description or in a Table. Tables or Figures should relate to each other logically in sequence and should be clear by themselves. Furthermore, the discussion is based entirely on these observations. Additionally, how the results are applied to further research in the field to advance our understanding of research questions was discussed.

Dr. Peush Sahni (All-India Institute of Medical Sciences, New Delhi) spoke on effectively ‘ structuring the Discussion ’ for a research paper. The Discussion section deals with a systematic interpretation of study results within the available knowledge. He said the section should begin with the most important point relating to the subject studied, focusing on key issues, providing link sentences between paragraphs, and ensuring the flow of text. Points were made to avoid history, not repeat all the results, and provide limitations of the study. The strengths and novel findings of the study should be provided in the discussion, and it should open avenues for future research and new questions. The Discussion section should end with a conclusion stating the summary of key findings. Dr. Sahni gave an example from a published paper for writing a Discussion. In another presentation titled ‘ Writing an effective title and the abstract ,’ Dr. Sahni described the important components of a good title, such as, it should be simple, concise, informative, interesting and eye-catching, accurate and specific about the paper's content, and should state the subject in full indicating study design and animal species. Dr. Sahni explained structured (IMRaD) and unstructured abstracts and discussed a few selected examples with the audience.

Language and style in publication

The next lecture of Dr. Amitabh Prakash on ‘ Language and style in scientific writing: Importance of terseness, shortness and clarity in writing ’ focused on the actual sentence construction, language, grammar and punctuation in scientific manuscripts. His presentation emphasized the importance of brevity and clarity in the writing of manuscripts describing biomedical research. Starting with a guide to the appropriate construction of sentences and paragraphs, attendees were given a brief overview of the correct use of punctuation with interactive examples. Dr. Prakash discussed common errors in grammar and proactively sought audience participation in correcting some examples. Additional discussion was centered on discouraging the use of redundant and expendable words, jargon, and the use of adjectives with incomparable words. The session ended with a discussion of words and phrases that are commonly misused (e.g., data vs . datum, affect vs . effect, among vs . between, dose vs . dosage, and efficacy/efficacious vs . effective/effectiveness) in biomedical research manuscripts.

Working with journals

The appropriateness in selecting the journal for submission and acceptance of the manuscript should be determined by the experience of an author. The corresponding author must have a rationale in choosing the appropriate journal, and this depends upon the scope of the study and the quality of work performed. Dr. Amitabh Prakash spoke on ‘ Working with journals: Selecting a journal, cover letter, peer review process and impact factor ’ by instructing the audience in assessing the true value of a journal, understanding principles involved in the peer review processes, providing tips on making an initial approach to the editorial office, and drafting an appropriate cover letter to accompany the submission. His presentation defined the metrics that are most commonly used to measure journal quality (e.g., impact factor™, Eigenfactor™ score, Article Influence™ score, SCOPUS 2-year citation data, SCImago Journal Rank, h-Index, etc.) and guided attendees on the relative advantages and disadvantages of using each metric. Factors to consider when assessing journal quality were discussed, and the audience was educated on the ‘green’ and ‘gold’ open access publication models. Various peer review models (e.g., double-blind, single-blind, non-blind) were described together with the role of the journal editor in assessing manuscripts and selecting suitable reviewers. A typical checklist sent to referees was shared with the attendees, and clear guidance was provided on the best way to address referee feedback. The session concluded with a discussion of the potential drawbacks of the current peer review system.

Poster and oral presentations at conferences

Posters have become an increasingly popular mode of presentation at conferences, as it can accommodate more papers per meeting, has no time constraint, provides a better presenter-audience interaction, and allows one to select and attend papers of interest. In Figure 2 , we provide instructions, design, and layout in preparing a scientific poster. In the final presentation, Dr. Sahni provided the audience with step-by-step instructions on how to write and format posters for layout, content, font size, color, and graphics. Attendees were given specific guidance on the format of text on slides, the use of color, font type and size, and the use of illustrations and multimedia effects. Moreover, the importance of practical tips while delivering oral or poster presentation was provided to the audience, such as speak slowly and clearly, be informative, maintain eye contact, and listen to the questions from judges/audience carefully before coming up with an answer.

An external file that holds a picture, illustration, etc.
Object name is JPP-4-130-g004.jpg

Guidelines and design to scientific poster presentation. The objective of scientific posters is to present laboratory work in scientific meetings. A poster is an excellent means of communicating scientific work, because it is a graphic representation of data. Posters should have focus points, and the intended message should be clearly conveyed through simple sections: Text, Tables, and Graphs. Posters should be clear, succinct, striking, and eye-catching. Colors should be used only where necessary. Use one font (Arial or Times New Roman) throughout. Fancy fonts should be avoided. All headings should have font size of 44, and be in bold capital letters. Size of Title may be a bit larger; subheading: Font size of 36, bold and caps. References and Acknowledgments, if any, should have font size of 24. Text should have font size between 24 and 30, in order to be legible from a distance of 3 to 6 feet. Do not use lengthy notes

PANEL DISCUSSION: FEEDBACK AND COMMENTS BY PARTICIPANTS

After all the presentations were made, Dr. Jagadeesh began a panel discussion that included all speakers. The discussion was aimed at what we do currently and could do in the future with respect to ‘developing a research question and then writing an effective thesis proposal/protocol followed by publication.’ Dr. Jagadeesh asked the following questions to the panelists, while receiving questions/suggestions from the participants and panelists.

  • Does a Post-Graduate or Ph.D. student receive adequate training, either through an institutional course, a workshop of the present nature, or from the guide?
  • Are these Post-Graduates self-taught (like most of us who learnt the hard way)?
  • How are these guides trained? How do we train them to become more efficient mentors?
  • Does a Post-Graduate or Ph.D. student struggle to find a method (s) to carry out studies? To what extent do seniors/guides help a post graduate overcome technical difficulties? How difficult is it for a student to find chemicals, reagents, instruments, and technical help in conducting studies?
  • Analyses of data and interpretation: Most students struggle without adequate guidance.
  • Thesis and publications frequently feature inadequate/incorrect statistical analyses and representation of data in tables/graphs. The student, their guide, and the reviewers all share equal responsibility.
  • Who initiates and drafts the research paper? The Post-Graduate or their guide?
  • What kind of assistance does a Post-Graduate get from the guide in finalizing a paper for publication?
  • Does the guide insist that each Post-Graduate thesis yield at least one paper, and each Ph.D. thesis more than two papers, plus a review article?

The panelists and audience expressed a variety of views, but were unable to arrive at a decisive conclusion.

WHAT HAVE THE PARTICIPANTS LEARNED?

At the end of this fast-moving two-day workshop, the participants had opportunities in learning the following topics:

  • Sequential steps in developing a study protocol, from choosing a research topic to developing research questions and a hypothesis.
  • Study protocols on different topics in their subject of specialization
  • Searching and reviewing the literature
  • Appropriate statistical analyses in biomedical research
  • Scientific ethics in publication
  • Writing and understanding the components of a research paper (IMRaD)
  • Recognizing the value of good title, running title, abstract, key words, etc
  • Importance of Tables and Figures in the Results section, and their importance in describing findings
  • Evidence-based Discussion in a research paper
  • Language and style in writing a paper and expert tips on getting it published
  • Presentation of research findings at a conference (oral and poster).

Overall, the workshop was deemed very helpful to participants. The participants rated the quality of workshop from “ satisfied ” to “ very satisfied .” A significant number of participants were of the opinion that the time allotted for each presentation was short and thus, be extended from the present two days to four days with adequate time to ask questions. In addition, a ‘hands-on’ session should be introduced for writing a proposal and manuscript. A large number of attendees expressed their desire to attend a similar workshop, if conducted, in the near future.

ACKNOWLEDGMENT

We gratefully express our gratitude to the Organizing Committee, especially Professors K. Chinnasamy, B. G. Shivananda, N. Udupa, Jerad Suresh, Padma Parekh, A. P. Basavarajappa, Mr. S. V. Veerramani, Mr. J. Jayaseelan, and all volunteers of the SRM University. We thank Dr. Thomas Papoian (US FDA) for helpful comments on the manuscript.

The opinions expressed herein are those of Gowraganahalli Jagadeesh and do not necessarily reflect those of the US Food and Drug Administration

Source of Support: Nil

Conflict of Interest: None declared.

Logo for British Columbia/Yukon Open Authoring Platform

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Chapter 1: Introduction to Research Methods

1.4 Understanding Key Research Concepts and Terms

In this textbook you will be exposed to many terms and concepts associated with research methods, particularly as they relate to the research planning decisions you must make along the way. Figure 1.3 will help you contextualize many of these terms and understand the research process. This general chart begins with two key concepts: ontology and epistemology, advances through other concepts, and concludes with three research methodological approaches: qualitative, quantitative and mixed methods.

Research does not end with making decisions about the type of methods you will use; we could argue that the work is just beginning at this point. Figure 1.3 does not represent an all-encompassing list of concepts and terms related to research methods. Keep in mind that each strategy has its own data collection and analysis approaches associated with the various methodological approaches you choose. Figure 1.3 is intentioned to provide a general overview of the research concept. You may want to keep this figure handy as you read through the various chapters.

research project definition and concept

Ontology & Epistemology

Thinking about what you know and how you know what you know involves questions of ontology and epistemology. Perhaps you have heard these concepts before in a philosophy class? These concepts are relevant to the work of sociologists as well. As sociologists (those who undertake socially-focused research), we want to understand some aspect of our social world. Usually, we are not starting with zero knowledge. In fact, we usually start with some understanding of three concepts: 1) what is; 2) what can be known about what is; and, 3) what the best mechanism happens to be for learning about what is (Saylor Academy, 2012). In the following sections, we will define these concepts and provide an example of the terms, ontology and epistemology.

Ontology is a Greek word that means the study, theory, or science of being. Ontology is concerned with the what is or the nature of reality (Saunders, Lewis, & Thornhill, 2009). It can involve some very large and difficult to answer questions, such as:

  • What is the purpose of life?
  • What, if anything, exists beyond our universe?
  • What categories does it belong to?
  • Is there such a thing as objective reality?
  • What does the verb “to be” mean?

Ontology is comprised of two aspects: objectivism and subjectivism. Objectivism means that social entities exist externally to the social actors who are concerned with their existence. Subjectivism means that social phenomena are created from the perceptions and actions of the social actors who are concerned with their existence (Saunders, et al., 2009). The table below provides an example of a similar research project to be undertaken by two different students. While the projects being proposed by the students are similar, they each have different research questions. Read the scenario and then answer the questions that follow.

Subjectivist and objectivist approaches (adapted from Saunders et al., 2009)

Ana is an Emergency & Security Management Studies (ESMS) student at a local college. She is just beginning her capstone research project and she plans to do research at the City of Vancouver. Her research question is: What is the role of City of Vancouver managers in the Emergency Management Department (EMD) in enabling positive community relationships? She will be collecting data related to the roles and duties of managers in enabling positive community relationships.

Robert is also an ESMS student at the same college. He, too, will be undertaking his research at the City of Vancouver. His research question is: What is the effect of the City of Vancouver’s corporate culture in enabling EMD managers to develop a positive relationship with the local community? He will be collecting data related to perceptions of corporate culture and its effect on enabling positive community-emergency management department relationships.

Before the students begin collecting data, they learn that six months ago, the long-time emergency department manager and assistance manager both retired. They have been replaced by two senior staff managers who have Bachelor’s degrees in Emergency Services Management. These new managers are considered more up-to-date and knowledgeable on emergency services management, given their specialized academic training and practical on-the-job work experience in this department. The new managers have essentially the same job duties and operate under the same procedures as the managers they replaced. When Ana and Robert approach the managers to ask them to participate in their separate studies, the new managers state that they are just new on the job and probably cannot answer the research questions; they decline to participate. Ana and Robert are worried that they will need to start all over again with a new research project. They return to their supervisors to get their opinions on what they should do.

Before reading about their supervisors’ responses, answer the following questions:

  • Is Ana’s research question indicative of an objectivist or a subjectivist approach?
  • Is Robert’s research question indicative of an objectivist or a subjectivist approach?
  • Given your answer in question 1, which managers could Ana interview (new, old, or both) for her research study? Why?
  • Given your answer in question 2, which managers could Robert interview (new, old, or both) for his research study? Why?

Ana’s supervisor tells her that her research question is set up for an objectivist approach. Her supervisor tells her that in her study the social entity (the City) exists in reality external to the social actors (the managers), i.e., there is a formal management structure at the City that has largely remained unchanged since the old managers left and the new ones started. The procedures remain the same regardless of whoever occupies those positions. As such, Ana, using an objectivist approach, could state that the new managers have job descriptions which describe their duties and that they are a part of a formal structure with a hierarchy of people reporting to them and to whom they report. She could further state that this hierarchy, which is unique to this organization, also resembles hierarchies found in other similar organizations. As such, she can argue that the new managers will be able to speak about the role they play in enabling positive community relationships. Their answers would likely be no different than those of the old managers, because the management structure and the procedures remain the same. Therefore, she could go back to the new managers and ask them to participate in her research study.

Robert’s supervisor tells him that his research is set up for a subjectivist approach. In his study, the social phenomena (the effect of corporate culture on the relationship with the community) is created from the perceptions and consequent actions of the social actors (the managers); i.e., the corporate culture at the City continually influences the process of social interaction, and these interactions influence perceptions of the relationship with the community. The relationship is in a constant state of revision. As such, Robert, using a subjectivist approach, could state that the new managers may have had few interactions with the community members to date and therefore may not be fully cognizant of how the corporate culture affects the department’s relationship with the community. While it would be important to get the new managers’ perceptions, he would also need to speak with the previous managers to get their perceptions from the time they were employed in their positions. This is because the community-department relationship is in a state of constant revision, which is influenced by the various managers’ perceptions of the corporate culture and its effect on their ability to form positive community relationships. Therefore, he could go back to the current managers and ask them to participate in his study, and also ask that the department please contact the previous managers to see if they would be willing to participate in his study.

As you can see the research question of each study guides the decision as to whether the researcher should take a subjective or an objective ontological approach. This decision, in turn, guides their approach to the research study, including whom they should interview.

Epistemology

Epistemology has to do with knowledge. Rather than dealing with questions about what is, epistemology deals with questions of how we know what is.  In sociology, there are many ways to uncover knowledge. We might interview people to understand public opinion about a topic, or perhaps observe them in their natural environment. We could avoid face-to-face interaction altogether by mailing people surveys to complete on their own or by reading people’s opinions in newspaper editorials. Each method of data collection comes with its own set of epistemological assumptions about how to find things out (Saylor Academy, 2012). There are two main subsections of epistemology: positivist and interpretivist philosophies. We will examine these philosophies or paradigms in the following sections.

Research Methods for the Social Sciences: An Introduction Copyright © 2020 by Valerie Sheppard is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

Educational resources and simple solutions for your research journey

What is a Conceptual Framework and How to Make It (with Examples)

What is a Conceptual Framework and How to Make It (with Examples)

What is a Conceptual Framework and How to Make It (with Examples)

A strong conceptual framework underpins good research. A conceptual framework in research is used to understand a research problem and guide the development and analysis of the research. It serves as a roadmap to conceptualize and structure the work by providing an outline that connects different ideas, concepts, and theories within the field of study. A conceptual framework pictorially or verbally depicts presumed relationships among the study variables.

The purpose of a conceptual framework is to serve as a scheme for organizing and categorizing knowledge and thereby help researchers in developing theories and hypotheses and conducting empirical studies.

In this post, we explain what is a conceptual framework, and provide expert advice on how to make a conceptual framework, along with conceptual framework examples.

Table of Contents

What is a Conceptual Framework in Research

Definition of a conceptual framework.

A conceptual framework includes key concepts, variables, relationships, and assumptions that guide the academic inquiry. It establishes the theoretical underpinnings and provides a lens through which researchers can analyze and interpret data. A conceptual framework draws upon existing theories, models, or established bodies of knowledge to provide a structure for understanding the research problem. It defines the scope of research, identifying relevant variables, establishing research questions, and guiding the selection of appropriate methodologies and data analysis techniques.

Conceptual frameworks can be written or visual. Other types of conceptual framework representations might be taxonomic (verbal description categorizing phenomena into classes without showing relationships between classes) or mathematical descriptions (expression of phenomena in the form of mathematical equations).

research project definition and concept

Figure 1: Definition of a conceptual framework explained diagrammatically

Conceptual Framework Origin

The term conceptual framework appears to have originated in philosophy and systems theory, being used for the first time in the 1930s by the philosopher Alfred North Whitehead. He bridged the theological, social, and physical sciences by providing a common conceptual framework. The use of the conceptual framework began early in accountancy and can be traced back to publications by William A. Paton and John B. Canning in the first quarter of the 20 th century. Thus, in the original framework, financial issues were addressed, such as useful features, basic elements, and variables needed to prepare financial statements. Nevertheless, a conceptual framework approach should be considered when starting your research journey in any field, from finance to social sciences to applied sciences.

Purpose and Importance of a Conceptual Framework in Research

The importance of a conceptual framework in research cannot be understated, irrespective of the field of study. It is important for the following reasons:

  • It clarifies the context of the study.
  • It justifies the study to the reader.
  • It helps you check your own understanding of the problem and the need for the study.
  • It illustrates the expected relationship between the variables and defines the objectives for the research.
  • It helps further refine the study objectives and choose the methods appropriate to meet them.

What to Include in a Conceptual Framework

Essential elements that a conceptual framework should include are as follows:

  • Overarching research question(s)
  • Study parameters
  • Study variables
  • Potential relationships between those variables.

The sources for these elements of a conceptual framework are literature, theory, and experience or prior knowledge.

How to Make a Conceptual Framework

Now that you know the essential elements, your next question will be how to make a conceptual framework.

For this, start by identifying the most suitable set of questions that your research aims to answer. Next, categorize the various variables. Finally, perform a rigorous analysis of the collected data and compile the final results to establish connections between the variables.

In short, the steps are as follows:

  • Choose appropriate research questions.
  • Define the different types of variables involved.
  • Determine the cause-and-effect relationships.

Be sure to make use of arrows and lines to depict the presence or absence of correlational linkages among the variables.

Developing a Conceptual Framework

Researchers should be adept at developing a conceptual framework. Here are the steps for developing a conceptual framework:

1. Identify a research question

Your research question guides your entire study, making it imperative to invest time and effort in formulating a question that aligns with your research goals and contributes to the existing body of knowledge. This step involves the following:

  • Choose a broad topic of interest
  • Conduct background research
  • Narrow down the focus
  • Define your goals
  • Make it specific and answerable
  • Consider significance and novelty
  • Seek feedback.

 2. Choose independent and dependent variables

The dependent variable is the main outcome you want to measure, explain, or predict in your study. It should be a variable that can be observed, measured, or assessed quantitatively or qualitatively. Independent variables are the factors or variables that may influence, explain, or predict changes in the dependent variable.

Choose independent and dependent variables for your study according to the research objectives, the nature of the phenomenon being studied, and the specific research design. The identification of variables is rooted in existing literature, theories, or your own observations.

3. Consider cause-and-effect relationships

To better understand and communicate the relationships between variables in your study, cause-and-effect relationships need to be visualized. This can be done by using path diagrams, cause-and-effect matrices, time series plots, scatter plots, bar charts, or heatmaps.

4. Identify other influencing variables

Besides the independent and dependent variables, researchers must understand and consider the following types of variables:

  • Moderating variable: A variable that influences the strength or direction of the relationship between an independent variable and a dependent variable.
  • Mediating variable: A variable that explains the relationship between an independent variable and a dependent variable and clarifies how the independent variable affects the dependent variable.
  • Control variable: A variable that is kept constant or controlled to avoid the influence of other factors that may affect the relationship between the independent and dependent variables.
  • Confounding variable: A type of unmeasured variable that is related to both the independent and dependent variables.

Example of a Conceptual Framework

Let us examine the following conceptual framework example. Let’s say your research topic is “ The Impact of Social Media Usage on Academic Performance among College Students .” Here, you want to investigate how social media usage affects academic performance in college students. Social media usage (encompassing frequency of social media use, time spent on social media platforms, and types of social media platforms used) is the independent variable, and academic performance (covering grades, exam scores, and class attendance) is the dependent variable.

This conceptual framework example also includes a mediating variable, study habits, which may explain how social media usage affects academic performance. Study habits (time spent studying, study environment, and use of study aids or resources) can act as a mechanism through which social media usage influences academic outcomes. Additionally, a moderating variable, self-discipline (level of self-control and self-regulation, ability to manage distractions, and prioritization skills), is included to examine how individual differences in self-control and discipline may influence the relationship between social media usage and academic performance.

Confounding variables are also identified (socioeconomic status, prior academic achievement), which are potential factors that may influence both social media usage and academic performance. These variables need to be considered and controlled in the study to ensure that any observed effects are specifically attributed to social media usage. A visual representation of this conceptual framework example is seen in Figure 2.

research project definition and concept

Figure 2: Visual representation of a conceptual framework for the topic “The Impact of Social Media Usage on Academic Performance among College Students”

Key Takeaways

Here is a snapshot of the basics of a conceptual framework in research:

  • A conceptual framework is an idea or model representing the subject or phenomena you intend to study.
  • It is primarily a researcher’s perception of the research problem. It can be used to develop hypotheses or testable research questions.
  • It provides a preliminary understanding of the factors at play, their interrelationships, and the underlying reasons.
  • It guides your research by aiding in the formulation of meaningful research questions, selection of appropriate methods, and identification of potential challenges to the validity of your findings.
  • It provides a structure for organizing and understanding data.
  • It allows you to chalk out the relationships between concepts and variables to understand them.
  • Variables besides dependent and independent variables (moderating, mediating, control, and confounding variables) must be considered when developing a conceptual framework.

Frequently Asked Questions

What is the difference between a moderating variable and a mediating variable.

Moderating and mediating variables are easily confused. A moderating variable affects the direction and strength of this relationship, whereas a mediating explains how two variables relate.

What is the difference between independent variables, dependent variables, and confounding variables?

Independent variables are the variables manipulated to affect the outcome of an experiment (e.g., the dose of a fat-loss drug administered to rats). Dependent variables are variables being measured or observed in an experiment (e.g., changes in rat body weight as a result of the drug). A confounding variable distorts or masks the effects of the variables being studied because it is associated both with dependent variable and with the independent variable. For instance, in this example, pre-existing metabolic dysfunction in some rats could interact differently with the drug being studied and also affect rat body weight.

Should I have more than one dependent or independent variable in a study?

The need for more than one dependent or independent variable in a study depends on the research question, study design, and relationships being investigated. Note the following when making this decision for your research:

  • If your research question involves exploring the relationships between multiple variables or factors, it may be appropriate to have more than one dependent or independent variable.
  • If you have specific hypotheses about the relationships between several variables, it may be necessary to include multiple dependent or independent variables.
  • Adequate resources, sample size, and data collection methods should be considered when determining the number of dependent and independent variables to include.

What is a confounding variable?

A confounding variable is not the main focus of the study but can unintentionally influence the relationship between the independent and dependent variables. Confounding variables can introduce bias and give rise to misleading conclusions. These variables must be controlled to ensure that any observed relationship is genuinely due to the independent variable.

What is a control variable?

A control variable is something not of interest to the study’s objectives but is kept constant because it could influence the outcomes. Control variables can help prevent research biases and allow for a more accurate assessment of the relationship between the independent and dependent variables. Examples are (i) testing all participants at the same time (e.g., in the morning) to minimize the potential effects of circadian rhythms, (ii) ensuring that instruments are calibrated consistently before each measurement to minimize the influence of measurement errors, and (iii) randomization of participants across study groups.

R Discovery is a literature search and research reading platform that accelerates your research discovery journey by keeping you updated on the latest, most relevant scholarly content. With 250M+ research articles sourced from trusted aggregators like CrossRef, Unpaywall, PubMed, PubMed Central, Open Alex and top publishing houses like Springer Nature, JAMA, IOP, Taylor & Francis, NEJM, BMJ, Karger, SAGE, Emerald Publishing and more, R Discovery puts a world of research at your fingertips.  

Try R Discovery Prime FREE for 1 week or upgrade at just US$72 a year to access premium features that let you listen to research on the go, read in your language, collaborate with peers, auto sync with reference managers, and much more. Choose a simpler, smarter way to find and read research – Download the app and start your free 7-day trial today !  

Related Posts

phd in computer science

How to get a PhD in Computer Science? 

phd in accounting

How to get a PhD in Accounting? 

What is research? A conceptual understanding

  • African Journal of Emergency Medicine 1(1)
  • CC BY-NC-ND 3.0

Navindhra Naidoo at Western Sydney University

  • Western Sydney University

Discover the world's research

  • 25+ million members
  • 160+ million publication pages
  • 2.3+ billion citations

Yusawinur Barella

  • Ana Fergina
  • Muhammad Khalifa Mustami
  • Ulfiani Rahman

Cipta Endyana

  • Hanny Hafiar

Fx. Ari Agung Prastowo

  • Nasir Majeed

Emmanuel Ndhlovu

  • Pengetahuan Dan
  • Kefahaman Guru
  • Terhadap Pelaksanaan
  • Afinah A D Matsud

Rabeya Yousuf

  • Shaeri Jahra Amreen

Abu Kholdun Al-Mahmood

  • Fevzi Koçak

Shallon Atuhaire

  • Frankline Higenyi

Kukunda Elizabeth Bacwayo

  • Rachel Nambuya

Don Kalb

  • Vincent A Anfara
  • Norma T Mertz
  • William R. Molasso

Valerie Malhotra Bentz

  • Jeremy Shapiro

Norman Fairclough

  • Recruit researchers
  • Join for free
  • Login Email Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google Welcome back! Please log in. Email · Hint Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google No account? Sign up
  • Privacy Policy

Research Method

Home » Research Methodology – Types, Examples and writing Guide

Research Methodology – Types, Examples and writing Guide

Table of Contents

Research Methodology

Research Methodology

Definition:

Research Methodology refers to the systematic and scientific approach used to conduct research, investigate problems, and gather data and information for a specific purpose. It involves the techniques and procedures used to identify, collect , analyze , and interpret data to answer research questions or solve research problems . Moreover, They are philosophical and theoretical frameworks that guide the research process.

Structure of Research Methodology

Research methodology formats can vary depending on the specific requirements of the research project, but the following is a basic example of a structure for a research methodology section:

I. Introduction

  • Provide an overview of the research problem and the need for a research methodology section
  • Outline the main research questions and objectives

II. Research Design

  • Explain the research design chosen and why it is appropriate for the research question(s) and objectives
  • Discuss any alternative research designs considered and why they were not chosen
  • Describe the research setting and participants (if applicable)

III. Data Collection Methods

  • Describe the methods used to collect data (e.g., surveys, interviews, observations)
  • Explain how the data collection methods were chosen and why they are appropriate for the research question(s) and objectives
  • Detail any procedures or instruments used for data collection

IV. Data Analysis Methods

  • Describe the methods used to analyze the data (e.g., statistical analysis, content analysis )
  • Explain how the data analysis methods were chosen and why they are appropriate for the research question(s) and objectives
  • Detail any procedures or software used for data analysis

V. Ethical Considerations

  • Discuss any ethical issues that may arise from the research and how they were addressed
  • Explain how informed consent was obtained (if applicable)
  • Detail any measures taken to ensure confidentiality and anonymity

VI. Limitations

  • Identify any potential limitations of the research methodology and how they may impact the results and conclusions

VII. Conclusion

  • Summarize the key aspects of the research methodology section
  • Explain how the research methodology addresses the research question(s) and objectives

Research Methodology Types

Types of Research Methodology are as follows:

Quantitative Research Methodology

This is a research methodology that involves the collection and analysis of numerical data using statistical methods. This type of research is often used to study cause-and-effect relationships and to make predictions.

Qualitative Research Methodology

This is a research methodology that involves the collection and analysis of non-numerical data such as words, images, and observations. This type of research is often used to explore complex phenomena, to gain an in-depth understanding of a particular topic, and to generate hypotheses.

Mixed-Methods Research Methodology

This is a research methodology that combines elements of both quantitative and qualitative research. This approach can be particularly useful for studies that aim to explore complex phenomena and to provide a more comprehensive understanding of a particular topic.

Case Study Research Methodology

This is a research methodology that involves in-depth examination of a single case or a small number of cases. Case studies are often used in psychology, sociology, and anthropology to gain a detailed understanding of a particular individual or group.

Action Research Methodology

This is a research methodology that involves a collaborative process between researchers and practitioners to identify and solve real-world problems. Action research is often used in education, healthcare, and social work.

Experimental Research Methodology

This is a research methodology that involves the manipulation of one or more independent variables to observe their effects on a dependent variable. Experimental research is often used to study cause-and-effect relationships and to make predictions.

Survey Research Methodology

This is a research methodology that involves the collection of data from a sample of individuals using questionnaires or interviews. Survey research is often used to study attitudes, opinions, and behaviors.

Grounded Theory Research Methodology

This is a research methodology that involves the development of theories based on the data collected during the research process. Grounded theory is often used in sociology and anthropology to generate theories about social phenomena.

Research Methodology Example

An Example of Research Methodology could be the following:

Research Methodology for Investigating the Effectiveness of Cognitive Behavioral Therapy in Reducing Symptoms of Depression in Adults

Introduction:

The aim of this research is to investigate the effectiveness of cognitive-behavioral therapy (CBT) in reducing symptoms of depression in adults. To achieve this objective, a randomized controlled trial (RCT) will be conducted using a mixed-methods approach.

Research Design:

The study will follow a pre-test and post-test design with two groups: an experimental group receiving CBT and a control group receiving no intervention. The study will also include a qualitative component, in which semi-structured interviews will be conducted with a subset of participants to explore their experiences of receiving CBT.

Participants:

Participants will be recruited from community mental health clinics in the local area. The sample will consist of 100 adults aged 18-65 years old who meet the diagnostic criteria for major depressive disorder. Participants will be randomly assigned to either the experimental group or the control group.

Intervention :

The experimental group will receive 12 weekly sessions of CBT, each lasting 60 minutes. The intervention will be delivered by licensed mental health professionals who have been trained in CBT. The control group will receive no intervention during the study period.

Data Collection:

Quantitative data will be collected through the use of standardized measures such as the Beck Depression Inventory-II (BDI-II) and the Generalized Anxiety Disorder-7 (GAD-7). Data will be collected at baseline, immediately after the intervention, and at a 3-month follow-up. Qualitative data will be collected through semi-structured interviews with a subset of participants from the experimental group. The interviews will be conducted at the end of the intervention period, and will explore participants’ experiences of receiving CBT.

Data Analysis:

Quantitative data will be analyzed using descriptive statistics, t-tests, and mixed-model analyses of variance (ANOVA) to assess the effectiveness of the intervention. Qualitative data will be analyzed using thematic analysis to identify common themes and patterns in participants’ experiences of receiving CBT.

Ethical Considerations:

This study will comply with ethical guidelines for research involving human subjects. Participants will provide informed consent before participating in the study, and their privacy and confidentiality will be protected throughout the study. Any adverse events or reactions will be reported and managed appropriately.

Data Management:

All data collected will be kept confidential and stored securely using password-protected databases. Identifying information will be removed from qualitative data transcripts to ensure participants’ anonymity.

Limitations:

One potential limitation of this study is that it only focuses on one type of psychotherapy, CBT, and may not generalize to other types of therapy or interventions. Another limitation is that the study will only include participants from community mental health clinics, which may not be representative of the general population.

Conclusion:

This research aims to investigate the effectiveness of CBT in reducing symptoms of depression in adults. By using a randomized controlled trial and a mixed-methods approach, the study will provide valuable insights into the mechanisms underlying the relationship between CBT and depression. The results of this study will have important implications for the development of effective treatments for depression in clinical settings.

How to Write Research Methodology

Writing a research methodology involves explaining the methods and techniques you used to conduct research, collect data, and analyze results. It’s an essential section of any research paper or thesis, as it helps readers understand the validity and reliability of your findings. Here are the steps to write a research methodology:

  • Start by explaining your research question: Begin the methodology section by restating your research question and explaining why it’s important. This helps readers understand the purpose of your research and the rationale behind your methods.
  • Describe your research design: Explain the overall approach you used to conduct research. This could be a qualitative or quantitative research design, experimental or non-experimental, case study or survey, etc. Discuss the advantages and limitations of the chosen design.
  • Discuss your sample: Describe the participants or subjects you included in your study. Include details such as their demographics, sampling method, sample size, and any exclusion criteria used.
  • Describe your data collection methods : Explain how you collected data from your participants. This could include surveys, interviews, observations, questionnaires, or experiments. Include details on how you obtained informed consent, how you administered the tools, and how you minimized the risk of bias.
  • Explain your data analysis techniques: Describe the methods you used to analyze the data you collected. This could include statistical analysis, content analysis, thematic analysis, or discourse analysis. Explain how you dealt with missing data, outliers, and any other issues that arose during the analysis.
  • Discuss the validity and reliability of your research : Explain how you ensured the validity and reliability of your study. This could include measures such as triangulation, member checking, peer review, or inter-coder reliability.
  • Acknowledge any limitations of your research: Discuss any limitations of your study, including any potential threats to validity or generalizability. This helps readers understand the scope of your findings and how they might apply to other contexts.
  • Provide a summary: End the methodology section by summarizing the methods and techniques you used to conduct your research. This provides a clear overview of your research methodology and helps readers understand the process you followed to arrive at your findings.

When to Write Research Methodology

Research methodology is typically written after the research proposal has been approved and before the actual research is conducted. It should be written prior to data collection and analysis, as it provides a clear roadmap for the research project.

The research methodology is an important section of any research paper or thesis, as it describes the methods and procedures that will be used to conduct the research. It should include details about the research design, data collection methods, data analysis techniques, and any ethical considerations.

The methodology should be written in a clear and concise manner, and it should be based on established research practices and standards. It is important to provide enough detail so that the reader can understand how the research was conducted and evaluate the validity of the results.

Applications of Research Methodology

Here are some of the applications of research methodology:

  • To identify the research problem: Research methodology is used to identify the research problem, which is the first step in conducting any research.
  • To design the research: Research methodology helps in designing the research by selecting the appropriate research method, research design, and sampling technique.
  • To collect data: Research methodology provides a systematic approach to collect data from primary and secondary sources.
  • To analyze data: Research methodology helps in analyzing the collected data using various statistical and non-statistical techniques.
  • To test hypotheses: Research methodology provides a framework for testing hypotheses and drawing conclusions based on the analysis of data.
  • To generalize findings: Research methodology helps in generalizing the findings of the research to the target population.
  • To develop theories : Research methodology is used to develop new theories and modify existing theories based on the findings of the research.
  • To evaluate programs and policies : Research methodology is used to evaluate the effectiveness of programs and policies by collecting data and analyzing it.
  • To improve decision-making: Research methodology helps in making informed decisions by providing reliable and valid data.

Purpose of Research Methodology

Research methodology serves several important purposes, including:

  • To guide the research process: Research methodology provides a systematic framework for conducting research. It helps researchers to plan their research, define their research questions, and select appropriate methods and techniques for collecting and analyzing data.
  • To ensure research quality: Research methodology helps researchers to ensure that their research is rigorous, reliable, and valid. It provides guidelines for minimizing bias and error in data collection and analysis, and for ensuring that research findings are accurate and trustworthy.
  • To replicate research: Research methodology provides a clear and detailed account of the research process, making it possible for other researchers to replicate the study and verify its findings.
  • To advance knowledge: Research methodology enables researchers to generate new knowledge and to contribute to the body of knowledge in their field. It provides a means for testing hypotheses, exploring new ideas, and discovering new insights.
  • To inform decision-making: Research methodology provides evidence-based information that can inform policy and decision-making in a variety of fields, including medicine, public health, education, and business.

Advantages of Research Methodology

Research methodology has several advantages that make it a valuable tool for conducting research in various fields. Here are some of the key advantages of research methodology:

  • Systematic and structured approach : Research methodology provides a systematic and structured approach to conducting research, which ensures that the research is conducted in a rigorous and comprehensive manner.
  • Objectivity : Research methodology aims to ensure objectivity in the research process, which means that the research findings are based on evidence and not influenced by personal bias or subjective opinions.
  • Replicability : Research methodology ensures that research can be replicated by other researchers, which is essential for validating research findings and ensuring their accuracy.
  • Reliability : Research methodology aims to ensure that the research findings are reliable, which means that they are consistent and can be depended upon.
  • Validity : Research methodology ensures that the research findings are valid, which means that they accurately reflect the research question or hypothesis being tested.
  • Efficiency : Research methodology provides a structured and efficient way of conducting research, which helps to save time and resources.
  • Flexibility : Research methodology allows researchers to choose the most appropriate research methods and techniques based on the research question, data availability, and other relevant factors.
  • Scope for innovation: Research methodology provides scope for innovation and creativity in designing research studies and developing new research techniques.

Research Methodology Vs Research Methods

Research MethodologyResearch Methods
Research methodology refers to the philosophical and theoretical frameworks that guide the research process. refer to the techniques and procedures used to collect and analyze data.
It is concerned with the underlying principles and assumptions of research.It is concerned with the practical aspects of research.
It provides a rationale for why certain research methods are used.It determines the specific steps that will be taken to conduct research.
It is broader in scope and involves understanding the overall approach to research.It is narrower in scope and focuses on specific techniques and tools used in research.
It is concerned with identifying research questions, defining the research problem, and formulating hypotheses.It is concerned with collecting data, analyzing data, and interpreting results.
It is concerned with the validity and reliability of research.It is concerned with the accuracy and precision of data.
It is concerned with the ethical considerations of research.It is concerned with the practical considerations of research.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Data collection

Data Collection – Methods Types and Examples

Conceptual Framework

Conceptual Framework – Types, Methodology and...

Research Questions

Research Questions – Types, Examples and Writing...

Purpose of Research

Purpose of Research – Objectives and Applications

Tables in Research Paper

Tables in Research Paper – Types, Creating Guide...

Research Paper Title Page

Research Paper Title Page – Example and Making...

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

Research Methods | Definitions, Types, Examples

Research methods are specific procedures for collecting and analyzing data. Developing your research methods is an integral part of your research design . When planning your methods, there are two key decisions you will make.

First, decide how you will collect data . Your methods depend on what type of data you need to answer your research question :

  • Qualitative vs. quantitative : Will your data take the form of words or numbers?
  • Primary vs. secondary : Will you collect original data yourself, or will you use data that has already been collected by someone else?
  • Descriptive vs. experimental : Will you take measurements of something as it is, or will you perform an experiment?

Second, decide how you will analyze the data .

  • For quantitative data, you can use statistical analysis methods to test relationships between variables.
  • For qualitative data, you can use methods such as thematic analysis to interpret patterns and meanings in the data.

Table of contents

Methods for collecting data, examples of data collection methods, methods for analyzing data, examples of data analysis methods, other interesting articles, frequently asked questions about research methods.

Data is the information that you collect for the purposes of answering your research question . The type of data you need depends on the aims of your research.

Qualitative vs. quantitative data

Your choice of qualitative or quantitative data collection depends on the type of knowledge you want to develop.

For questions about ideas, experiences and meanings, or to study something that can’t be described numerically, collect qualitative data .

If you want to develop a more mechanistic understanding of a topic, or your research involves hypothesis testing , collect quantitative data .

Qualitative to broader populations. .
Quantitative .

You can also take a mixed methods approach , where you use both qualitative and quantitative research methods.

Primary vs. secondary research

Primary research is any original data that you collect yourself for the purposes of answering your research question (e.g. through surveys , observations and experiments ). Secondary research is data that has already been collected by other researchers (e.g. in a government census or previous scientific studies).

If you are exploring a novel research question, you’ll probably need to collect primary data . But if you want to synthesize existing knowledge, analyze historical trends, or identify patterns on a large scale, secondary data might be a better choice.

Primary . methods.
Secondary

Descriptive vs. experimental data

In descriptive research , you collect data about your study subject without intervening. The validity of your research will depend on your sampling method .

In experimental research , you systematically intervene in a process and measure the outcome. The validity of your research will depend on your experimental design .

To conduct an experiment, you need to be able to vary your independent variable , precisely measure your dependent variable, and control for confounding variables . If it’s practically and ethically possible, this method is the best choice for answering questions about cause and effect.

Descriptive . .
Experimental

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

research project definition and concept

Research methods for collecting data
Research method Primary or secondary? Qualitative or quantitative? When to use
Primary Quantitative To test cause-and-effect relationships.
Primary Quantitative To understand general characteristics of a population.
Interview/focus group Primary Qualitative To gain more in-depth understanding of a topic.
Observation Primary Either To understand how something occurs in its natural setting.
Secondary Either To situate your research in an existing body of work, or to evaluate trends within a research topic.
Either Either To gain an in-depth understanding of a specific group or context, or when you don’t have the resources for a large study.

Your data analysis methods will depend on the type of data you collect and how you prepare it for analysis.

Data can often be analyzed both quantitatively and qualitatively. For example, survey responses could be analyzed qualitatively by studying the meanings of responses or quantitatively by studying the frequencies of responses.

Qualitative analysis methods

Qualitative analysis is used to understand words, ideas, and experiences. You can use it to interpret data that was collected:

  • From open-ended surveys and interviews , literature reviews , case studies , ethnographies , and other sources that use text rather than numbers.
  • Using non-probability sampling methods .

Qualitative analysis tends to be quite flexible and relies on the researcher’s judgement, so you have to reflect carefully on your choices and assumptions and be careful to avoid research bias .

Quantitative analysis methods

Quantitative analysis uses numbers and statistics to understand frequencies, averages and correlations (in descriptive studies) or cause-and-effect relationships (in experiments).

You can use quantitative analysis to interpret data that was collected either:

  • During an experiment .
  • Using probability sampling methods .

Because the data is collected and analyzed in a statistically valid way, the results of quantitative analysis can be easily standardized and shared among researchers.

Research methods for analyzing data
Research method Qualitative or quantitative? When to use
Quantitative To analyze data collected in a statistically valid manner (e.g. from experiments, surveys, and observations).
Meta-analysis Quantitative To statistically analyze the results of a large collection of studies.

Can only be applied to studies that collected data in a statistically valid manner.

Qualitative To analyze data collected from interviews, , or textual sources.

To understand general themes in the data and how they are communicated.

Either To analyze large volumes of textual or visual data collected from surveys, literature reviews, or other sources.

Can be quantitative (i.e. frequencies of words) or qualitative (i.e. meanings of words).

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Chi square test of independence
  • Statistical power
  • Descriptive statistics
  • Degrees of freedom
  • Pearson correlation
  • Null hypothesis
  • Double-blind study
  • Case-control study
  • Research ethics
  • Data collection
  • Hypothesis testing
  • Structured interviews

Research bias

  • Hawthorne effect
  • Unconscious bias
  • Recall bias
  • Halo effect
  • Self-serving bias
  • Information bias

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to systematically measure variables and test hypotheses . Qualitative methods allow you to explore concepts and experiences in more detail.

In mixed methods research , you use both qualitative and quantitative data collection and analysis methods to answer your research question .

A sample is a subset of individuals from a larger population . Sampling means selecting the group that you will actually collect data from in your research. For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

In statistics, sampling allows you to test a hypothesis about the characteristics of a population.

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts and meanings, use qualitative methods .
  • If you want to analyze a large amount of readily-available data, use secondary data. If you want data specific to your purposes with control over how it is generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

Methodology refers to the overarching strategy and rationale of your research project . It involves studying the methods used in your field and the theories or principles behind them, in order to develop an approach that matches your objectives.

Methods are the specific tools and procedures you use to collect and analyze data (for example, experiments, surveys , and statistical tests ).

In shorter scientific papers, where the aim is to report the findings of a specific study, you might simply describe what you did in a methods section .

In a longer or more complex research project, such as a thesis or dissertation , you will probably include a methodology section , where you explain your approach to answering the research questions and cite relevant sources to support your choice of methods.

Is this article helpful?

Other students also liked, writing strong research questions | criteria & examples.

  • What Is a Research Design | Types, Guide & Examples
  • Data Collection | Definition, Methods & Examples

More interesting articles

  • Between-Subjects Design | Examples, Pros, & Cons
  • Cluster Sampling | A Simple Step-by-Step Guide with Examples
  • Confounding Variables | Definition, Examples & Controls
  • Construct Validity | Definition, Types, & Examples
  • Content Analysis | Guide, Methods & Examples
  • Control Groups and Treatment Groups | Uses & Examples
  • Control Variables | What Are They & Why Do They Matter?
  • Correlation vs. Causation | Difference, Designs & Examples
  • Correlational Research | When & How to Use
  • Critical Discourse Analysis | Definition, Guide & Examples
  • Cross-Sectional Study | Definition, Uses & Examples
  • Descriptive Research | Definition, Types, Methods & Examples
  • Ethical Considerations in Research | Types & Examples
  • Explanatory and Response Variables | Definitions & Examples
  • Explanatory Research | Definition, Guide, & Examples
  • Exploratory Research | Definition, Guide, & Examples
  • External Validity | Definition, Types, Threats & Examples
  • Extraneous Variables | Examples, Types & Controls
  • Guide to Experimental Design | Overview, Steps, & Examples
  • How Do You Incorporate an Interview into a Dissertation? | Tips
  • How to Do Thematic Analysis | Step-by-Step Guide & Examples
  • How to Write a Literature Review | Guide, Examples, & Templates
  • How to Write a Strong Hypothesis | Steps & Examples
  • Inclusion and Exclusion Criteria | Examples & Definition
  • Independent vs. Dependent Variables | Definition & Examples
  • Inductive Reasoning | Types, Examples, Explanation
  • Inductive vs. Deductive Research Approach | Steps & Examples
  • Internal Validity in Research | Definition, Threats, & Examples
  • Internal vs. External Validity | Understanding Differences & Threats
  • Longitudinal Study | Definition, Approaches & Examples
  • Mediator vs. Moderator Variables | Differences & Examples
  • Mixed Methods Research | Definition, Guide & Examples
  • Multistage Sampling | Introductory Guide & Examples
  • Naturalistic Observation | Definition, Guide & Examples
  • Operationalization | A Guide with Examples, Pros & Cons
  • Population vs. Sample | Definitions, Differences & Examples
  • Primary Research | Definition, Types, & Examples
  • Qualitative vs. Quantitative Research | Differences, Examples & Methods
  • Quasi-Experimental Design | Definition, Types & Examples
  • Questionnaire Design | Methods, Question Types & Examples
  • Random Assignment in Experiments | Introduction & Examples
  • Random vs. Systematic Error | Definition & Examples
  • Reliability vs. Validity in Research | Difference, Types and Examples
  • Reproducibility vs Replicability | Difference & Examples
  • Reproducibility vs. Replicability | Difference & Examples
  • Sampling Methods | Types, Techniques & Examples
  • Semi-Structured Interview | Definition, Guide & Examples
  • Simple Random Sampling | Definition, Steps & Examples
  • Single, Double, & Triple Blind Study | Definition & Examples
  • Stratified Sampling | Definition, Guide & Examples
  • Structured Interview | Definition, Guide & Examples
  • Survey Research | Definition, Examples & Methods
  • Systematic Review | Definition, Example, & Guide
  • Systematic Sampling | A Step-by-Step Guide with Examples
  • Textual Analysis | Guide, 3 Approaches & Examples
  • The 4 Types of Reliability in Research | Definitions & Examples
  • The 4 Types of Validity in Research | Definitions & Examples
  • Transcribing an Interview | 5 Steps & Transcription Software
  • Triangulation in Research | Guide, Types, Examples
  • Types of Interviews in Research | Guide & Examples
  • Types of Research Designs Compared | Guide & Examples
  • Types of Variables in Research & Statistics | Examples
  • Unstructured Interview | Definition, Guide & Examples
  • What Is a Case Study? | Definition, Examples & Methods
  • What Is a Case-Control Study? | Definition & Examples
  • What Is a Cohort Study? | Definition & Examples
  • What Is a Conceptual Framework? | Tips & Examples
  • What Is a Controlled Experiment? | Definitions & Examples
  • What Is a Double-Barreled Question?
  • What Is a Focus Group? | Step-by-Step Guide & Examples
  • What Is a Likert Scale? | Guide & Examples
  • What Is a Prospective Cohort Study? | Definition & Examples
  • What Is a Retrospective Cohort Study? | Definition & Examples
  • What Is Action Research? | Definition & Examples
  • What Is an Observational Study? | Guide & Examples
  • What Is Concurrent Validity? | Definition & Examples
  • What Is Content Validity? | Definition & Examples
  • What Is Convenience Sampling? | Definition & Examples
  • What Is Convergent Validity? | Definition & Examples
  • What Is Criterion Validity? | Definition & Examples
  • What Is Data Cleansing? | Definition, Guide & Examples
  • What Is Deductive Reasoning? | Explanation & Examples
  • What Is Discriminant Validity? | Definition & Example
  • What Is Ecological Validity? | Definition & Examples
  • What Is Ethnography? | Definition, Guide & Examples
  • What Is Face Validity? | Guide, Definition & Examples
  • What Is Non-Probability Sampling? | Types & Examples
  • What Is Participant Observation? | Definition & Examples
  • What Is Peer Review? | Types & Examples
  • What Is Predictive Validity? | Examples & Definition
  • What Is Probability Sampling? | Types & Examples
  • What Is Purposive Sampling? | Definition & Examples
  • What Is Qualitative Observation? | Definition & Examples
  • What Is Qualitative Research? | Methods & Examples
  • What Is Quantitative Observation? | Definition & Examples
  • What Is Quantitative Research? | Definition, Uses & Methods

"I thought AI Proofreading was useless but.."

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

IMAGES

  1. Research Concept Map: Definition, Templates and Tutorial

    research project definition and concept

  2. Conceptual Research: Definition, Framework, Example and Advantages

    research project definition and concept

  3. Concept

    research project definition and concept

  4. Research Project

    research project definition and concept

  5. Types of Research Projects

    research project definition and concept

  6. PPT

    research project definition and concept

VIDEO

  1. What is Research? || Concept||Definition||Objective of Research|| By Dr. Sushil Singh ||

  2. define Project, what is project, definition of project in urdu, #shorts #project #bsn

  3. Definition & Concept of Quality control, Quality Assurance, GMP/cGMP

  4. Research Meaning

  5. Chapter 3

  6. Innovation Project Definition

COMMENTS

  1. Research Project

    Research Project is a planned and systematic investigation into a specific area of interest or problem, with the goal of generating new knowledge, insights, or solutions. It typically involves identifying a research question or hypothesis, designing a study to test it, collecting and analyzing data, and drawing conclusions based on the findings.

  2. What is a research project?

    A research project is an academic, scientific, or professional undertaking to answer a research question. Research projects can take many forms, such as qualitative or quantitative, descriptive, longitudinal, experimental, or correlational. What kind of research approach you choose will depend on your topic.

  3. What Is a Research Design

    A research design is a strategy for answering your research question using empirical data. Creating a research design means making decisions about: Your overall research objectives and approach. Whether you'll rely on primary research or secondary research. Your sampling methods or criteria for selecting subjects. Your data collection methods.

  4. How to Conceptualize a Research Project

    The research process has three phases: the conceptual phase the empirical phase, which involves conducting the activities necessary to obtain and analyze data; and the interpretative phase, which involves determining the meaning of the results in relation to the purpose of the project and the associated conceptual framework [2].

  5. What is Research? Definition, Types, Methods and Process

    Research is defined as a meticulous and systematic inquiry process designed to explore and unravel specific subjects or issues with precision. This methodical approach encompasses the thorough collection, rigorous analysis, and insightful interpretation of information, aiming to delve deep into the nuances of a chosen field of study.

  6. The What: Defining a research project

    According to a Rutgers University resource titled, Definition of a research project and specifications for fulfilling the requirement, "A research project is a scientific endeavor to answer a research question.". Specifically, projects may take the form of "case series, case control study, cohort study, randomized, controlled trial ...

  7. The critical steps for successful research: The research proposal and

    A research question is broken down into more precise objectives. The objectives lead to more precise methods and definition of key terms. The objectives should be SMART-Specific, Measurable, Achievable, Realistic, Time-framed, and should cover the entire breadth of the project. The objectives are sometimes organized into hierarchies: Primary ...

  8. Types of Research Designs Compared

    Other interesting articles. If you want to know more about statistics, methodology, or research bias, make sure to check out some of our other articles with explanations and examples. Statistics. Normal distribution. Skewness. Kurtosis. Degrees of freedom. Variance. Null hypothesis.

  9. Research Process

    Definition: Research Process is a systematic and structured approach that involves the collection, analysis, and interpretation of data or information to answer a specific research question or solve a particular problem. ... Start with a clear research question: A well-defined research question is the foundation of a successful research project ...

  10. 1.4 Understanding Key Research Concepts and Terms

    Figure 1.3 does not represent an all-encompassing list of concepts and terms related to research methods. Keep in mind that each strategy has its own data collection and analysis approaches associated with the various methodological approaches you choose. Figure 1.3 is intentioned to provide a general overview of the research concept.

  11. PDF Unit: 01 Research: Meaning, Types, Scope and Significance

    1.3 Meaning of Research 1.4 Definition of Research 1.5 Characteristics of Research 1.6 Types of Research 1.7 Methodology of Research 1.8 Formulation of Research Problem 1.9 Research Design 1.9.1 Meaning of Research Design 1.9.2 Characteristics of Research Design 1.9.3 Steps in Research Design 1.10 Concept of Hypotheses

  12. What is a Conceptual Framework and How to Make It (with Examples)

    Here is a snapshot of the basics of a conceptual framework in research: A conceptual framework is an idea or model representing the subject or phenomena you intend to study. It is primarily a researcher's perception of the research problem. It can be used to develop hypotheses or testable research questions.

  13. Conceptual Framework

    Definition: A conceptual framework is a structured approach to organizing and understanding complex ideas, theories, or concepts. It provides a systematic and coherent way of thinking about a problem or topic, and helps to guide research or analysis in a particular field. A conceptual framework typically includes a set of assumptions, concepts ...

  14. What Is a Conceptual Framework?

    Developing a conceptual framework in research. Step 1: Choose your research question. Step 2: Select your independent and dependent variables. Step 3: Visualize your cause-and-effect relationship. Step 4: Identify other influencing variables. Frequently asked questions about conceptual models.

  15. Research Design

    Research Design. Definition: Research design refers to the overall strategy or plan for conducting a research study. It outlines the methods and procedures that will be used to collect and analyze data, as well as the goals and objectives of the study. ... Determines the overall structure of the research project and sets the stage for the ...

  16. (PDF) What is research? A conceptual understanding

    Research is a systematic endeavor to acquire understanding, broaden knowledge, or find answers to unanswered questions. It is a methodical and structured undertaking to investigate the natural and ...

  17. Research Methodology

    Research methodology formats can vary depending on the specific requirements of the research project, but the following is a basic example of a structure for a research methodology section: I. Introduction. Provide an overview of the research problem and the need for a research methodology section; Outline the main research questions and ...

  18. Research Objectives

    Example: Research objectives. To assess the relationship between sedentary habits and muscle atrophy among the participants. To determine the impact of dietary factors, particularly protein consumption, on the muscular health of the participants. To determine the effect of physical activity on the participants' muscular health.

  19. PDF Definition of A Research Project and Specifications for Fulfilling the

    research project is a scientific endeavor to answer a research question. Research projects may include: Case series. Case control study. Cohort study. Randomized, controlled trial. Survey. Secondary data analysis such as decision analysis, cost effectiveness analysis or meta-analysis. Each resident must work under the guidance of a faculty mentor.

  20. How to Define a Research Problem

    A research problem is a specific issue or gap in existing knowledge that you aim to address in your research. You may choose to look for practical problems aimed at contributing to change, or theoretical problems aimed at expanding knowledge. Some research will do both of these things, but usually the research problem focuses on one or the other.

  21. Research Methods

    Research methods are specific procedures for collecting and analyzing data. Developing your research methods is an integral part of your research design. When planning your methods, there are two key decisions you will make. First, decide how you will collect data. Your methods depend on what type of data you need to answer your research question: