Back Home

  • Science Notes Posts
  • Contact Science Notes
  • Todd Helmenstine Biography
  • Anne Helmenstine Biography
  • Free Printable Periodic Tables (PDF and PNG)
  • Periodic Table Wallpapers
  • Interactive Periodic Table
  • Periodic Table Posters
  • Science Experiments for Kids
  • How to Grow Crystals
  • Chemistry Projects
  • Fire and Flames Projects
  • Holiday Science
  • Chemistry Problems With Answers
  • Physics Problems
  • Unit Conversion Example Problems
  • Chemistry Worksheets
  • Biology Worksheets
  • Periodic Table Worksheets
  • Physical Science Worksheets
  • Science Lab Worksheets
  • My Amazon Books

Sources of Error in Science Experiments

All science experiments contain error, so it's important to know the types of error and how to calculate it. (Image: NASA/GSFC/Chris Gunn)

Science labs usually ask you to compare your results against theoretical or known values. This helps you evaluate your results and compare them against other people’s values. The difference between your results and the expected or theoretical results is called error. The amount of error that is acceptable depends on the experiment, but a margin of error of 10% is generally considered acceptable. If there is a large margin of error, you’ll be asked to go over your procedure and identify any mistakes you may have made or places where error might have been introduced. So, you need to know the different types and sources of error and how to calculate them.

How to Calculate Absolute Error

One method of measuring error is by calculating absolute error , which is also called absolute uncertainty. This measure of accuracy is reported using the units of measurement. Absolute error is simply the difference between the measured value and either the true value or the average value of the data.

absolute error = measured value – true value

For example, if you measure gravity to be 9.6 m/s 2 and the true value is 9.8 m/s 2 , then the absolute error of the measurement is 0.2 m/s 2 . You could report the error with a sign, so the absolute error in this example could be -0.2 m/s 2 .

If you measure the length of a sample three times and get 1.1 cm, 1.5 cm, and 1.3 cm, then the absolute error is +/- 0.2 cm or you would say the length of the sample is 1.3 cm (the average) +/- 0.2 cm.

Some people consider absolute error to be a measure of how accurate your measuring instrument is. If you are using a ruler that reports length to the nearest millimeter, you might say the absolute error of any measurement taken with that ruler is to the nearest 1 mm or (if you feel confident you can see between one mark and the next) to the nearest 0.5 mm.

How to Calculate Relative Error

Relative error is based on the absolute error value. It compares how large the error is to the magnitude of the measurement. So, an error of 0.1 kg might be insignificant when weighing a person, but pretty terrible when weighing a apple. Relative error is a fraction, decimal value, or percent.

Relative Error = Absolute Error / Total Value

For example, if your speedometer says you are going 55 mph, when you’re really going 58 mph, the absolute error is 3 mph / 58 mph or 0.05, which you could multiple by 100% to give 5%. Relative error may be reported with a sign. In this case, the speedometer is off by -5% because the recorded value is lower than the true value.

Because the absolute error definition is ambiguous, most lab reports ask for percent error or percent difference.

How to Calculate Percent Error

The most common error calculation is percent error , which is used when comparing your results against a known, theoretical, or accepted value. As you probably guess from the name, percent error is expressed as a percentage. It is the absolute (no negative sign) difference between your value and the accepted value, divided by the accepted value, multiplied by 100% to give the percent:

% error = [accepted – experimental ] / accepted x 100%

How to Calculate Percent Difference

Another common error calculation is called percent difference . It is used when you are comparing one experimental result to another. In this case, no result is necessarily better than another, so the percent difference is the absolute value (no negative sign) of the difference between the values, divided by the average of the two numbers, multiplied by 100% to give a percentage:

% difference = [experimental value – other value] / average x 100%

Sources and Types of Error

Every experimental measurement, no matter how carefully you take it, contains some amount of uncertainty or error. You are measuring against a standard, using an instrument that can never perfectly duplicate the standard, plus you’re human, so you might introduce errors based on your technique. The three main categories of errors are systematic errors, random errors , and personal errors. Here’s what these types of errors are and common examples.

Systematic Errors

Systematic error affects all the measurements you take. All of these errors will be in the same direction (greater than or less than the true value) and you can’t compensate for them by taking additional data. Examples of Systematic Errors

  • If you forget to calibrate a balance or you’re off a bit in the calibration, all mass measurements will be high/low by the same amount. Some instruments require periodic calibration throughout the course of an experiment , so it’s good to make a note in your lab notebook to see whether the calibrations appears to have affected the data.
  • Another example is measuring volume by reading a meniscus (parallax). You likely read a meniscus exactly the same way each time, but it’s never perfectly correct. Another person taking the reading may take the same reading, but view the meniscus from a different angle, thus getting a different result. Parallax can occur in other types of optical measurements, such as those taken with a microscope or telescope.
  • Instrument drift is a common source of error when using electronic instruments. As the instruments warm up, the measurements may change. Other common systematic errors include hysteresis or lag time, either relating to instrument response to a change in conditions or relating to fluctuations in an instrument that hasn’t reached equilibrium. Note some of these systematic errors are progressive, so data becomes better (or worse) over time, so it’s hard to compare data points taken at the beginning of an experiment with those taken at the end. This is why it’s a good idea to record data sequentially, so you can spot gradual trends if they occur. This is also why it’s good to take data starting with different specimens each time (if applicable), rather than always following the same sequence.
  • Not accounting for a variable that turns out to be important is usually a systematic error, although it could be a random error or a confounding variable. If you find an influencing factor, it’s worth noting in a report and may lead to further experimentation after isolating and controlling this variable.

Random Errors

Random errors are due to fluctuations in the experimental or measurement conditions. Usually these errors are small. Taking more data tends to reduce the effect of random errors. Examples of Random Errors

  • If your experiment requires stable conditions, but a large group of people stomp through the room during one data set, random error will be introduced. Drafts, temperature changes, light/dark differences, and electrical or magnetic noise are all examples of environmental factors that can introduce random errors.
  • Physical errors may also occur, since a sample is never completely homogeneous. For this reason, it’s best to test using different locations of a sample or take multiple measurements to reduce the amount of error.
  • Instrument resolution is also considered a type of random error because the measurement is equally likely higher or lower than the true value. An example of a resolution error is taking volume measurements with a beaker as opposed to a graduated cylinder. The beaker will have a greater amount of error than the cylinder.
  • Incomplete definition can be a systematic or random error, depending on the circumstances. What incomplete definition means is that it can be hard for two people to define the point at which the measurement is complete. For example, if you’re measuring length with an elastic string, you’ll need to decide with your peers when the string is tight enough without stretching it. During a titration, if you’re looking for a color change, it can be hard to tell when it actually occurs.

Personal Errors

When writing a lab report, you shouldn’t cite “human error” as a source of error. Rather, you should attempt to identify a specific mistake or problem. One common personal error is going into an experiment with a bias about whether a hypothesis will be supported or rejects. Another common personal error is lack of experience with a piece of equipment, where your measurements may become more accurate and reliable after you know what you’re doing. Another type of personal error is a simple mistake, where you might have used an incorrect quantity of a chemical, timed an experiment inconsistently, or skipped a step in a protocol.

Related Posts

Learn The Types

Learn About Different Types of Things and Unleash Your Curiosity

Understanding Experimental Errors: Types, Causes, and Solutions

Types of experimental errors.

In scientific experiments, errors can occur that affect the accuracy and reliability of the results. These errors are often classified into three main categories: systematic errors, random errors, and human errors. Here are some common types of experimental errors:

1. Systematic Errors

Systematic errors are consistent and predictable errors that occur throughout an experiment. They can arise from flaws in equipment, calibration issues, or flawed experimental design. Some examples of systematic errors include:

– Instrumental Errors: These errors occur due to inaccuracies or limitations of the measuring instruments used in the experiment. For example, a thermometer may consistently read temperatures slightly higher or lower than the actual value.

– Environmental Errors: Changes in environmental conditions, such as temperature or humidity, can introduce systematic errors. For instance, if an experiment requires precise temperature control, fluctuations in the room temperature can impact the results.

– Procedural Errors: Errors in following the experimental procedure can lead to systematic errors. This can include improper mixing of reagents, incorrect timing, or using the wrong formula or equation.

2. Random Errors

Random errors are unpredictable variations that occur during an experiment. They can arise from factors such as inherent limitations of measurement tools, natural fluctuations in data, or human variability. Random errors can occur independently in each measurement and can cause data points to scatter around the true value. Some examples of random errors include:

– Instrument Noise: Instruments may introduce random noise into the measurements, resulting in small variations in the recorded data.

– Biological Variability: In experiments involving living organisms, natural biological variability can contribute to random errors. For example, in studies involving human subjects, individual differences in response to a treatment can introduce variability.

– Reading Errors: When taking measurements, human observers can introduce random errors due to imprecise readings or misinterpretation of data.

3. Human Errors

Human errors are mistakes or inaccuracies that occur due to human factors, such as lack of attention, improper technique, or inadequate training. These errors can significantly impact the experimental results. Some examples of human errors include:

– Data Entry Errors: Mistakes made when recording data or entering data into a computer can introduce errors. These errors can occur due to typographical mistakes, transposition errors, or misinterpretation of results.

– Calculation Errors: Errors in mathematical calculations can occur during data analysis or when performing calculations required for the experiment. These errors can result from mathematical mistakes, incorrect formulas, or rounding errors.

– Experimental Bias: Personal biases or preconceived notions held by the experimenter can introduce bias into the experiment, leading to inaccurate results.

It is crucial for scientists to be aware of these types of errors and take measures to minimize their impact on experimental outcomes. This includes careful experimental design, proper calibration of instruments, multiple repetitions of measurements, and thorough documentation of procedures and observations.

You Might Also Like:

Patio perfection: choosing the best types of pavers for your outdoor space, a guide to types of pupusas: delicious treats from central america, exploring modern period music: from classical to jazz and beyond.