High Impact Tutoring Built By Math Experts
Personalized standards-aligned one-on-one math tutoring for schools and districts
Free ready-to-use math resources
Hundreds of free math resources created by experienced math teachers to save time, build engagement and accelerate growth
20 Effective Math Strategies To Approach Problem-Solving
Katie Keeton
Math strategies for problem-solving help students use a range of approaches to solve many different types of problems. It involves identifying the problem and carrying out a plan of action to find the answer to mathematical problems.
Problem-solving skills are essential to math in the general classroom and real-life. They require logical reasoning and critical thinking skills. Students must be equipped with strategies to help them find solutions to problems.
This article explores mathematical problem solving strategies, logical reasoning and critical thinking skills to help learners with solving math word problems independently in real-life situations.
What are problem-solving strategies?
Problem-solving strategies in math are methods students can use to figure out solutions to math problems. Some problem-solving strategies:
- Draw a model
- Use different approaches
- Check the inverse to make sure the answer is correct
Students need to have a toolkit of math problem-solving strategies at their disposal to provide different ways to approach math problems. This makes it easier to find solutions and understand math better.
Strategies can help guide students to the solution when it is difficult ot know when to start.
The ultimate guide to problem solving techniques
Download these ready-to-go problem solving techniques that every student should know. Includes printable tasks for students including challenges, short explanations for teachers with questioning prompts.
20 Math Strategies For Problem-Solving
Different problem-solving math strategies are required for different parts of the problem. It is unlikely that students will use the same strategy to understand and solve the problem.
Here are 20 strategies to help students develop their problem-solving skills.
Strategies to understand the problem
Strategies that help students understand the problem before solving it helps ensure they understand:
- The context
- What the key information is
- How to form a plan to solve it
Following these steps leads students to the correct solution and makes the math word problem easier .
Here are five strategies to help students understand the content of the problem and identify key information.
1. Read the problem aloud
Read a word problem aloud to help understand it. Hearing the words engages auditory processing. This can make it easier to process and comprehend the context of the situation.
2. Highlight keywords
When keywords are highlighted in a word problem, it helps the student focus on the essential information needed to solve it. Some important keywords help determine which operation is needed. For example, if the word problem asks how many are left, the problem likely requires subtraction. Ensure students highlight the keywords carefully and do not highlight every number or keyword. There is likely irrelevant information in the word problem.
3. Summarize the information
Read the problem aloud, highlight the key information and then summarize the information. Students can do this in their heads or write down a quick summary. Summaries should include only the important information and be in simple terms that help contextualize the problem.
4. Determine the unknown
A common problem that students have when solving a word problem is misunderstanding what they are solving. Determine what the unknown information is before finding the answer. Often, a word problem contains a question where you can find the unknown information you need to solve. For example, in the question ‘How many apples are left?’ students need to find the number of apples left over.
5. Make a plan
Once students understand the context of the word problem, have dentified the important information and determined the unknown, they can make a plan to solve it. The plan will depend on the type of problem. Some problems involve more than one step to solve them as some require more than one answer. Encourage students to make a list of each step they need to take to solve the problem before getting started.
Strategies for solving the problem
1. draw a model or diagram.
Students may find it useful to draw a model, picture, diagram, or other visual aid to help with the problem solving process. It can help to visualize the problem to understand the relationships between the numbers in the problem. In turn, this helps students see the solution.
Similarly, you could draw a model to represent the objects in the problem:
2. Act it out
This particular strategy is applicable at any grade level but is especially helpful in math investigation in elementary school . It involves a physical demonstration or students acting out the problem using movements, concrete resources and math manipulatives . When students act out a problem, they can visualize and contectualize the word problem in another way and secure an understanding of the math concepts. The examples below show how 1st-grade students could “act out” an addition and subtraction problem:
3. Work backwards
Working backwards is a popular problem-solving strategy. It involves starting with a possible solution and deciding what steps to take to arrive at that solution. This strategy can be particularly helpful when students solve math word problems involving multiple steps. They can start at the end and think carefully about each step taken as opposed to jumping to the end of the problem and missing steps in between.
For example,
To solve this problem working backwards, start with the final condition, which is Sam’s grandmother’s age (71) and work backwards to find Sam’s age. Subtract 20 from the grandmother’s age, which is 71. Then, divide the result by 3 to get Sam’s age. 71 – 20 = 51 51 ÷ 3 = 17 Sam is 17 years old.
4. Write a number sentence
When faced with a word problem, encourage students to write a number sentence based on the information. This helps translate the information in the word problem into a math equation or expression, which is more easily solved. It is important to fully understand the context of the word problem and what students need to solve before writing an equation to represent it.
5. Use a formula
Specific formulas help solve many math problems. For example, if a problem asks students to find the area of a rug, they would use the area formula (area = length × width) to solve. Make sure students know the important mathematical formulas they will need in tests and real-life. It can help to display these around the classroom or, for those who need more support, on students’ desks.
Strategies for checking the solution
Once the problem is solved using an appropriate strategy, it is equally important to check the solution to ensure it is correct and makes sense.
There are many strategies to check the solution. The strategy for a specific problem is dependent on the problem type and math content involved.
Here are five strategies to help students check their solutions.
1. Use the Inverse Operation
For simpler problems, a quick and easy problem solving strategy is to use the inverse operation. For example, if the operation to solve a word problem is 56 ÷ 8 = 7 students can check the answer is correct by multiplying 8 × 7. As good practice, encourage students to use the inverse operation routinely to check their work.
2. Estimate to check for reasonableness
Once students reach an answer, they can use estimation or rounding to see if the answer is reasonable. Round each number in the equation to a number that’s close and easy to work with, usually a multiple of ten. For example, if the question was 216 ÷ 18 and the quotient was 12, students might round 216 to 200 and round 18 to 20. Then use mental math to solve 200 ÷ 20, which is 10. When the estimate is clear the two numbers are close. This means your answer is reasonable.
3. Plug-In Method
This method is particularly useful for algebraic equations. Specifically when working with variables. To use the plug-in method, students solve the problem as asked and arrive at an answer. They can then plug the answer into the original equation to see if it works. If it does, the answer is correct.
If students use the equation 20m+80=300 to solve this problem and find that m = 11, they can plug that value back into the equation to see if it is correct. 20m + 80 = 300 20 (11) + 80 = 300 220 + 80 = 300 300 = 300 ✓
4. Peer Review
Peer review is a great tool to use at any grade level as it promotes critical thinking and collaboration between students. The reviewers can look at the problem from a different view as they check to see if the problem was solved correctly. Problem solvers receive immediate feedback and the opportunity to discuss their thinking with their peers. This strategy is effective with mixed-ability partners or similar-ability partners. In mixed-ability groups, the partner with stronger skills provides guidance and support to the partner with weaker skills, while reinforcing their own understanding of the content and communication skills. If partners have comparable ability levels and problem-solving skills, they may find that they approach problems differently or have unique insights to offer each other about the problem-solving process.
5. Use a Calculator
A calculator can be introduced at any grade level but may be best for older students who already have a foundational understanding of basic math operations. Provide students with a calculator to allow them to check their solutions independently, accurately, and quickly. Since calculators are so readily available on smartphones and tablets, they allow students to develop practical skills that apply to real-world situations.
Step-by-step problem-solving processes for your classroom
In his book, How to Solve It , published in 1945, mathematician George Polya introduced a 4-step process to solve problems.
Polya’s 4 steps include:
- Understand the problem
- Devise a plan
- Carry out the plan
Today, in the style of George Polya, many problem-solving strategies use various acronyms and steps to help students recall.
Many teachers create posters and anchor charts of their chosen process to display in their classrooms. They can be implemented in any elementary, middle school or high school classroom.
Here are 5 problem-solving strategies to introduce to students and use in the classroom.
How Third Space Learning improves problem-solving
Resources .
Third Space Learning offers a free resource library is filled with hundreds of high-quality resources. A team of experienced math experts carefully created each resource to develop students mental arithmetic, problem solving and critical thinking.
Explore the range of problem solving resources for 2nd to 8th grade students.
One-on-one tutoring
Third Space Learning offers one-on-one math tutoring to help students improve their math skills. Highly qualified tutors deliver high-quality lessons aligned to state standards.
Former teachers and math experts write all of Third Space Learning’s tutoring lessons. Expertly designed lessons follow a “my turn, follow me, your turn” pedagogy to help students move from guided instruction and problem-solving to independent practice.
Throughout each lesson, tutors ask higher-level thinking questions to promote critical thinking and ensure students are developing a deep understanding of the content and problem-solving skills.
Problem-solving
Educators can use many different strategies to teach problem-solving and help students develop and carry out a plan when solving math problems. Incorporate these math strategies into any math program and use them with a variety of math concepts, from whole numbers and fractions to algebra.
Teaching students how to choose and implement problem-solving strategies helps them develop mathematical reasoning skills and critical thinking they can apply to real-life problem-solving.
READ MORE :
- 8 Common Core math examples
- Tier 3 Interventions: A School Leaders Guide
- Tier 2 Interventions: A School Leaders Guide
- Tier 1 Interventions: A School Leaders Guide
There are many different strategies for problem-solving; Here are 5 problem-solving strategies: • draw a model • act it out • work backwards • write a number sentence • use a formula
Here are 10 strategies for problem-solving: • Read the problem aloud • Highlight keywords • Summarize the information • Determine the unknown • Make a plan • Draw a model • Act it out • Work backwards • Write a number sentence • Use a formula
1. Understand the problem 2. Devise a plan 3. Carry out the plan 4. Look back
Some strategies you can use to solve challenging math problems are: breaking the problem into smaller parts, using diagrams or models, applying logical reasoning, and trying different approaches.
Related articles
Building Thinking Classrooms: Effective Strategies For Your Math Classroom
Differentiation Strategies In The Classroom: 8 Methods For Every Teacher
Retrieval Practice: A Foolproof Method To Improve Student Retention and Recall
5 Tried And Tested Strategies To Increase Student Engagement At School
Ultimate Guide to Metacognition [FREE]
Looking for a summary on metacognition in relation to math teaching and learning?
Check out this guide featuring practical examples, tips and strategies to successfully embed metacognition across your school to accelerate math growth.
Privacy Overview
Interactive problem solving that’s effective and fun. Get smarter in 15 minutes a day.
Join over 10 million learners worldwide
Over 50,000 5-star app reviews
Concepts that click
Interactive lessons make even complex ideas easy to grasp. Instant, custom feedback accelerates your understanding.
Learn at your level
Brush up on the basics or learn new skills. Designed for learners ages 13 to 113.
Stay motivated
Finish every day smarter with engaging lessons, competitive features, and daily encouragement.
Guided bite-sized lessons
Stay on track, see your progress, and build your problem solving skills one concept at a time.
More effective. More fun.
Brilliant’s interactive approach teaches you to think, not memorize.
Designed by experts
All of our courses are crafted by award-winning teachers and professionals from top institutions.
Guided paths for every journey
Math courses.
Solving Equations
Systems of Equations
Real World Algebra
Understanding Graphs
Start your journey
Join over 10 million people learning interactively.
Download on the
Behind the scenes
© 2024 Brilliant Worldwide, Inc., Brilliant and the Brilliant Logo are trademarks of Brilliant Worldwide, Inc.
- Skip to main content
- Skip to primary sidebar
- Skip to footer
Additional menu
Khan Academy Blog
Unlocking the Power of Math Learning: Strategies and Tools for Success
posted on September 20, 2023
Mathematics, the foundation of all sciences and technology, plays a fundamental role in our everyday lives. Yet many students find the subject challenging, causing them to shy away from it altogether. This reluctance is often due to a lack of confidence, a misunderstanding of unclear concepts, a move ahead to more advanced skills before they are ready, and ineffective learning methods. However, with the right approach, math learning can be both rewarding and empowering. This post will explore different approaches to learning math, strategies for success, and cutting-edge tools to help you achieve your goals.
Math Learning
Math learning can take many forms, including traditional classroom instruction, online courses, and self-directed learning. A multifaceted approach to math learning can improve understanding, engage students, and promote subject mastery. A 2014 study by the National Council of Teachers of Mathematics found that the use of multiple representations, such as visual aids, graphs, and real-world examples, supports the development of mathematical connections, reasoning, and problem-solving skills.
Moreover, the importance of math learning goes beyond solving equations and formulas. Advanced math skills are essential for success in many fields, including science, engineering, finance, health care, and technology. In fact, a report by Burning Glass Technologies found that 71% of high-salary, entry-level positions require advanced math skills.
Benefits of Math Learning
In today’s 21st-century world, having a broad knowledge base and strong reading and math skills is essential. Mathematical literacy plays a crucial role in this success. It empowers individuals to comprehend the world around them and make well-informed decisions based on data-driven understanding. More than just earning good grades in math, mathematical literacy is a vital life skill that can open doors to economic opportunities, improve financial management, and foster critical thinking. We’re not the only ones who say so:
- Math learning enhances problem-solving skills, critical thinking, and logical reasoning abilities. (Source: National Council of Teachers of Mathematics )
- It improves analytical skills that can be applied in various real-life situations, such as budgeting or analyzing data. (Source: Southern New Hampshire University )
- Math learning promotes creativity and innovation by fostering a deep understanding of patterns and relationships. (Source: Purdue University )
- It provides a strong foundation for careers in fields such as engineering, finance, computer science, and more. These careers generally correlate to high wages. (Source: U.S. Bureau of Labor Statistics )
- Math skills are transferable and can be applied across different academic disciplines. (Source: Sydney School of Education and Social Work )
How to Know What Math You Need to Learn
Often students will find gaps in their math knowledge; this can occur at any age or skill level. As math learning is generally iterative, a solid foundation and understanding of the math skills that preceded current learning are key to success. The solution to these gaps is called mastery learning, the philosophy that underpins Khan Academy’s approach to education .
Mastery learning is an educational philosophy that emphasizes the importance of a student fully understanding a concept before moving on to the next one. Rather than rushing students through a curriculum, mastery learning asks educators to ensure that learners have “mastered” a topic or skill, showing a high level of proficiency and understanding, before progressing. This approach is rooted in the belief that all students can learn given the appropriate learning conditions and enough time, making it a markedly student-centered method. It promotes thoroughness over speed and encourages individualized learning paths, thus catering to the unique learning needs of each student.
Students will encounter mastery learning passively as they go through Khan Academy coursework, as our platform identifies gaps and systematically adjusts to support student learning outcomes. More details can be found in our Educators Hub .
Try Our Free Confidence Boosters
How to learn math.
Learning at School
One of the most common methods of math instruction is classroom learning. In-class instruction provides students with real-time feedback, practical application, and a peer-learning environment. Teachers can personalize instruction by assessing students’ strengths and weaknesses, providing remediation when necessary, and offering advanced instruction to students who need it.
Learning at Home
Supplemental learning at home can complement traditional classroom instruction. For example, using online resources that provide additional practice opportunities, interactive games, and demonstrations, can help students consolidate learning outside of class. E-learning has become increasingly popular, with a wealth of online resources available to learners of all ages. The benefits of online learning include flexibility, customization, and the ability to work at one’s own pace. One excellent online learning platform is Khan Academy, which offers free video tutorials, interactive practice exercises, and a wealth of resources across a range of mathematical topics.
Moreover, parents can encourage and monitor progress, answer questions, and demonstrate practical applications of math in everyday life. For example, when at the grocery store, parents can ask their children to help calculate the price per ounce of two items to discover which one is the better deal. Cooking and baking with your children also provides a lot of opportunities to use math skills, like dividing a recipe in half or doubling the ingredients.
Learning Math with the Help of Artificial Intelligence (AI)
AI-powered tools are changing the way students learn math. Personalized feedback and adaptive practice help target individual needs. Virtual tutors offer real-time help with math concepts while AI algorithms identify areas for improvement. Custom math problems provide tailored practice, and natural language processing allows for instant question-and-answer sessions.
Using Khan Academy’s AI Tutor, Khanmigo
Transform your child’s grasp of mathematics with Khanmigo , the 24/7 AI-powered tutor that specializes in tailored, one-on-one math instruction. Available at any time, Khanmigo provides personalized support that goes beyond mere answers to nurture genuine mathematical understanding and critical thinking. Khanmigo can track progress, identify strengths and weaknesses, and offer real-time feedback to help students stay on the right track. Within a secure and ethical AI framework, your child can tackle everything from basic arithmetic to complex calculus, all while you maintain oversight using robust parental controls.
Get Math Help with Khanmigo Right Now
You can learn anything .
Math learning is essential for success in the modern world, and with the right approach, it can also be enjoyable and rewarding. Learning math requires curiosity, diligence, and the ability to connect abstract concepts with real-world applications. Strategies for effective math learning include a multifaceted approach, including classroom instruction, online courses, homework, tutoring, and personalized AI support.
So, don’t let math anxiety hold you back; take advantage of available resources and technology to enhance your knowledge base and enjoy the benefits of math learning.
National Council of Teachers of Mathematics, “Principles to Actions: Ensuring Mathematical Success for All” , April 2014
Project Lead The Way Research Report, “The Power of Transportable Skills: Assessing the Demand and Value of the Skills of the Future” , 2020
Page. M, “Why Develop Quantitative and Qualitative Data Analysis Skills?” , 2016
Mann. EL, Creativity: The Essence of Mathematics, Journal for the Education of the Gifted. Vol. 30, No. 2, 2006, pp. 236–260, http://www.prufrock.com ’
Nakakoji Y, Wilson R.” Interdisciplinary Learning in Mathematics and Science: Transfer of Learning for 21st Century Problem Solving at University ”. J Intell. 2020 Sep 1;8(3):32. doi: 10.3390/jintelligence8030032. PMID: 32882908; PMCID: PMC7555771.
Get Khanmigo
The best way to learn and teach with AI is here. Ace the school year with our AI-powered guide, Khanmigo.
For learners For teachers For parents
Problem solving in mathematics education: tracing its foundations and current research-practice trends
- Original Paper
- Open access
- Published: 30 April 2024
- Volume 56 , pages 211–222, ( 2024 )
Cite this article
You have full access to this open access article
- Manuel Santos-Trigo ORCID: orcid.org/0000-0002-7144-2098 1
6864 Accesses
3 Citations
2 Altmetric
Explore all metrics
In tracing recent research trends and directions in mathematical problem-solving, it is argued that advances in mathematics practices occur and take place around two intertwined activities, mathematics problem formulation and ways to approach and solve those problems. In this context, a problematizing principle emerges as central activity to organize mathematics curriculum proposals and ways to structure problem-solving learning environments. Subjects’ use of concrete, abstract, symbolic, or digital tools not only influences the ways to pose and pursue mathematical problems; but also shapes the type of representation, exploration, and reasoning they engage to work and solve problems. Problem-solving foundations that privilege learners’ development of habits of mathematical practices that involve an inquiry method to formulate conjectures, to look for different ways to represent and approach problems, and to support and communicate results shed light on directions of current research trends and the relevance of rethinking curriculum proposals and extending problem-solving environments in terms of teachers/students’ consistent use of digital tools and online developments.
Similar content being viewed by others
Reflections on Problem-Solving
Designing opportunities to learn mathematics theory-building practices
Forging New Opportunities for Problem Solving in Australian Mathematics Classrooms through the First National Mathematics Curriculum
Avoid common mistakes on your manuscript.
1 Introduction and rationale
Mathematical problem solving has been a prominent theme and research area in the mathematics education agenda during the last four decades. Problem-solving perspectives have influenced and shaped mathematics curriculum proposals and ways to support learning environments worldwide (Törner et al., 2007 ; Toh et al., 2023 ). Various disciplinary communities have identified and contributed to connect problem-solving approaches with the students’ learning, construction, and application of mathematical knowledge. The mathematics community recognizes that the formulation and resolution of problems are central activities in the development of the discipline (Halmos, 1980 , Polya, 1945 ). Indeed, the identification and presentation of lists of unsolved mathematical problems have been a tradition that has inspired the mathematics community to approach mathematical problems and to generate mathematical knowledge (Hilbert, 1902 ; Devlin, 2002 ). Thus, mathematical problems, results, and solution attempts provide information regarding what areas and contents were studied at different times during the development of the discipline (Santos-Trigo, 2020a , b ). Cai et al. ( 2023 ) stated that “ …[E]ngaging learners in the activity of problem posing reflects a potentially strong link to the discipline of mathematics” (p. 5). Thurston ( 1994 ) recognized that understanding and applying a mathematical concept implies analysing, coordinating, and integrating diverse meanings (geometric, visual, intuitive, and formal definition) associated with such concept and ways to carry out corresponding procedures and operations in problematic situations.
The centrality of problem-solving in mathematicians’ own work and in their teaching, is incontrovertible. Problem-solving is also a central topic for mathematics educators, who have developed conceptual frameworks to formulate general ideas about problem-solving (as opposed to the specific ideas needed for solving specific problems) (Fried, 2014 ; p.17).
That is, the mathematics education community is interested in analysing and documenting the students’ cognitive and social behaviours to understand and develop mathematical knowledge and problem-solving competencies. “…the idea of understanding how mathematicians treat and solve problems, and then implementing this understanding in instruction design, was pivotal in mathematics education research and practice” (Koichu, 2014 ). In addition, other disciplines such as psychology, cognitive science or artificial intelligence have provided tools and methods to delve into learners’ ways to understand mathematical concepts and to work on problem situations. Thus, members of various communities have often worked in collaboration to identify and relate relevant aspects of mathematical practices with the design and implementation of learning scenarios that foster and enhance students’ mathematical thinking and the development of problem-solving competencies.
2 Methods and procedures
Research focus, themes, and inquiry methods in the mathematical problem-solving agenda have varied and been influenced and shaped by theoretical and methodological developments of mathematics education as a discipline (English & Kirshner, 2016 ; Liljedahl & Cai, 2021 ). Further, research designs and methods used in cognitive, social, and computational fields have influenced the ways in which mathematical problem-solving research are framed. An overarching question to capture shifts and foundations in problem-solving developments was: How has mathematical problem-solving research agenda varied and evolved in terms of ways to frame, pose, and pursue research questions? In addressing this question, it was important to identify and contrast the structure and organization around some published problem-solving reviews (Lester, 1994 ; Törner et al., 2007 ; Rott et al., 2021 ; Liljedahl & Cai, 2021 ; Toh et al., 2023 ) to shed light on a possible route to connect seminal developments in the field with current research trends and perspectives in mathematical problem-solving developments. The goal was to identify common problem-solving principles that have provided a rational and foundations to support recent problem-solving approaches for learners to construct mathematical knowledge and to develop problem-solving competencies. The criteria to select the set of published peer-reviewed studies, to consider in this review, involved choosing articles published in indexed journals (ZDM-Mathematics Education, Educational Studies in Mathematics, Mathematical Thinking and Learning, Journal of Mathematical Behavior, and Journal for Research in Mathematics Education); contributions that appear in International Handbooks in Mathematics Education; and chapters published in recent mathematical problem-solving books. The initial search included 205 publications whose number was reduced to 55, all published in English, based on reviewing their abstracts and conclusions. Around 100 of the initial selection appeared in the references of an ongoing weekly mathematical problem-solving doctoral seminar that has been implemented during the last six years in our department. In addition, some well-known authors in the field were asked to identify their most representative publications to include in the review list. Here, some suggestions were received, but at the end the list of contributions, that appears in the references section, was chosen based on my vision and experience in the field. The goal was to identify main issues or dimensions to frame and analyse recent research trends and perspectives in mathematical problem-solving developments. Thus, seminal reviews in the field (Schoenfeld, 1992 ; Lester, 1994 ; Törner et al., 2007 ) provided directions on ways to structure and select the questions used to analyse the selected contributions. Table 1 shows chosen issues that resemble features of an adjusted framework that Lester ( 1994 ) proposed to organize, summarize, and analyse problem-solving developments in terms of research emphasis (themes and research questions), methodologies (research designs and methods), and achieved results that the problem-solving community addressed during the 1970–1994 period. Furthermore, relevant shifts in the mathematical problem-solving agenda could be identified and explained in terms of what the global mathematics education and other disciplines pursue at different periods.
It is important to mention that the content and structure of this paper involve a narrative synthesis of selected articles that includes contributions related to mathematical problem-solving foundations and those that address recent developments published in the last 9 years that involve the use of digital technologies. Table 1 shows themes, issues, and overarching questions that were used to delve into problem-solving developments.
To contextualize the current state of art in the field, it is important to revisit problem-solving principles and tenets that provide foundations and a rationale to centre and support the design and implementation of learning environments around problem-solving activities (Santos-Trigo, 2020a , b ). The identification of mathematical problem-solving foundations also implies acknowledging what terms, concepts, and language or discourse that the problem-solving community has used to refer to and frame problem-solving approaches. For example, routine and nonroutine tasks, heuristic and metacognitive strategies, students’ beliefs, mathematical thinking and practices, resources, orientations, etc. are common terms used to explain, foster, and characterize students’ problem-solving behaviours and performances. Recently, the consistent use of digital technologies in educational tasks has extended the problem-solving language to include terms such as subjects’ tool appropriation, dynamic models, dragging or moving orderly objects, tracing loci, visual or empirical solution, ChatGPT prompts, etc.
3 On mathematical problem-solving foundations and the problematizing principle
There might be different ways to interpret and implement a problem-solving approach for students to understand concepts and to solve problems (Törner, Schoenfeld, & Reiss, 2007 ; Toh et al., 2023 ); nevertheless, there are common principles or tenets that distinguish and support a problem-solving teaching/learning environment. A salient feature in any problem-solving approach to learn mathematics is a conceptualization of the discipline that privileges and enhance the students’ development of mathematical practices or reasoning habits of mathematical thinking (Cuoco, et, al., 1996 ; Dick & Hollebrands, 2011 ; Schoenfeld, 2022 ). In this context, students need to conceptualize and think of their own learning as a set of dilemmas that are represented, explored, and solved in terms of mathematical resources and strategies (Santos-Trigo, 2023 ; Hiebert et al., 1996 ).
Furthermore, students’ problem-solving experiences and behaviours reflect and become a way of thinking that is consistent with mathematics practices and is manifested in terms of the activities they engage throughout all problem-solving phases. Thus, they privilege the development of mathematics habits such as to always look for different ways to model and explore mathematical problems, to formulate conjectures, and to search for arguments to support them, share problem solutions, defend their ideas, and to develop a proper language to communicate results. In terms of connecting ways of developing mathematical knowledge and the design of learning environments to develop mathematical thinking and problem-solving competencies, Polya ( 1945 ) identifies an inquiry approach for students to understand, make sense, and apply mathematical concepts. He illustrated the importance for students to pose and pursue different questions around four intertwined problem-solving phases: Understanding and making sense of the problem statement (what is the problem about? What data are provided? What is asked to find? etc.), the design of a solution plan (how the problem can be approached? ), the implementation of such plan (how the plan can be achieved? ), and the looking-back phase that involves reviewing the solution process (data used, checking the involved operations, consistency of units, and partial and global solution), generalizing the solution methods and posing new problems. Indeed, the looking-back phase involves the formulation of new or related problems (Toh et al., 2023 ). “For Pólya, mathematics was about inquiry; it was about sense making; it was about understanding how and why mathematical ideas fit together the ways they do” (cited in Schoenfeld, 2020 , p. 1167).
Likewise, the Nobel laureate I. I. Rabi mentioned that, when he came home from school, “while other mothers asked their kids ‘ Did you learn anything today ?’ [my mother] would say, ‘ Izzy, did you ask a good question today ?’” (Berger, 2014 , p.67).
Thus, the problematizing principle is key for students to engage in mathematical problem-solving activities, and it gets activated by an inquiry or inquisitive method that is expressed in terms of questions that students pose and pursue to delve into concepts meaning, representations, explorations, operations, and to work on mathematical tasks (Santos-Trigo, 2020a , b ).
4 The importance of mathematical tasks and the role of tools in problem-solving perspectives
In a problem-solving approach, learners develop a way of thinking to work on different types of tasks that involve a variety of context and aims (Cai & Hwang, 2023 ). A task might require students to formulate a problem from given information, to estimate how much water a family spend in one year, to prove a geometry theorem, to model genetic sequences or to understand the interplay between climate and geography. In this process, students identify mathematical resources, concepts, and strategies to model and explore partial and global solutions, and ways to extend solution methods and results. Furthermore, mathematical tasks or problems are essential for students to engage in mathematical practice and to develop problem-solving competencies. Task statements should be situated in different contexts including realistic, authentic, or mathematical domains, and prompts or questions to solve or respond or even provide information or data for students to formulate and solve their own problems (problem posing). Current events or problematic situations such as climate change, immigration, or pandemics not only are part of individuals concerns; but also, a challenge for teachers and students to model and analyze those complex problems through mathematics and others disciplines knowledge (English, 2023 ). Santos-Trigo ( 2019 ) proposed a framework to transform exercises or routine textbook problems into a series of nonroutine tasks in which students have an opportunity to dynamically model, explore, and extend, the initial problem. Here, the use of technology becomes important to explore the behavior of some elements within the model to find objects’ mathematical relationships. That is, students work on tasks in such a way that even routine problems become a starting point for them to engage in mathematical reflection to extend the initial nature of the task (Santos-Trigo & Reyes-Martínez, 2019 ). Recently, the emergence of tools such as the ChatGPT has confirmed the importance for learners to problematize situations, including complex problems, in terms of providing prompts or inputs that the tool processes and answers. Here, students analyze the tool’ responses and assess its pertinence to work and solve the task. Indeed, a way to use ChatGPT involves that students understand or make sense of the problem statement and pose questions (inputs or prompts) to ask the tool for concept information or ways to approach or solve the task. Then, students analyze the relevance, viability, and consistency of the tool’s answer and introduce new inputs to continue with the solution process or to look for another way to approach the task. Based on the ChatGPT output or task solution, students could always ask whether the tool can provide other ways to solve the task.
5 Main problem-solving research themes and results
In this section the focus will be on identifying certain problem-solving developments that have permeated recent directions of the field. One relates to the importance of extending research designs to analyse and characterize learners’ problem-solving process to work on different types of tasks. Another development involves ways in which theoretical advances in mathematics education have shaped the mathematical problem-solving research agenda and the extent to which regional or national educational systems or traditions influence the developments of conceptual frameworks in the field and ways to implement problem-solving activities within the corresponding system. Finally, research results in the field have provided directions to design and implement curriculum proposals around the world and these proposals have evolved in terms of both content structure and classroom dynamics including the use of digital technologies. Santos-Trigo ( 2023 ) stated that the teachers and students’ systematic use of digital technologies not only expands their ways of reasoning and solving mathematical problems; but also opens new research areas that aim to analyse the integration of several digital tools in curriculum proposals and learning scenarios. The focus of this review will be on presenting problem-solving directions and results in the last 9 years; however, it became relevant to identify and review what principles and tenets provided bases or foundations to support and define current research trends and directions in the field. That is, accumulated research that has contributed to advance and expand the problem-solving research agenda included shifts in the tools used to delve into learners’ problem approaches, the development of conceptual frameworks to explain and characterize students’ mathematical thinking, the tools used to work on mathematical tasks (from paper and pencil, ruler and compass or semiotic tools to digital apps), and in the design of curriculum proposals and the implementation of problem-solving learning scenarios.
5.1 Relevant shifts in problem-solving developments and results
Questions used to analyse important developments in the field include: What research designs and tools are used to foster and analyse learners’ problem-solving performances? How have conceptual frameworks evolved to pose and frame research questions in the field? How have accumulated research results in the field been used to support curriculum proposals and their implementation?
5.1.1 Methodological and research paradigms
Research designs in problem-solving studies have gradually moved from quantitative or statistical paradigms to qualitative perspectives that involve data collection from different sources such as task-based interviews, fieldnotes from observations, students’ written reports, etc. to analyse students’ problem-solving approaches and performances. Trustworthiness of results included triangulating and interpreting data sources from students’ videotapes transcriptions, outside observer notes, class observations, etc. (Stake, 2000 ). Hence, the work of Krutestkii ( 1976 ) was seminal in providing tools to delve into the students’ thinking while solving mathematical tasks. His research program aimed to study the nature and structure of children’ mathematical abilities. His methodological approach involved the use of student’s task-based interviews, teachers, and mathematicians’ questionaries to explore the nature of mathematical abilities, the analysis of eminent mathematicians and physicists regarding their nature and emergence of their talents and case studies of gifted children in mathematics. A major contribution of his research was the variety of mathematical tasks used to explore and analyse the mathematical abilities of school children. Recently, the mathematical problem-posing agenda has been revisited to advance conceptual frameworks to enhance the students’ formulation of problems to learn concepts and to develop problem-solving competencies (Cai et al., 2023 ). In general, the initial qualitative research tendency privileged case studies where individual students were asked to work on mathematical tasks to document their problem-solving performances. Later, research designs include the students’ participation in small groups and the analysis of students’ collaboration with the entire group (Brady et al., 2023 ). Bricolage frameworks that share tenets and information from different fields have become a powerful tool for researchers to understand complex people’ problem-solving proficiency (Lester, 2005 ; English, 2023 ).
5.1.2 Theoretical developments in mathematics education
In mathematics education, the constructivism perspective became relevant to orient and support research programs. Specifically, the recognition that students construct mathematical concepts and ideas through active participation as a part of a learning community that fosters and values what they bring into the classroom (eliciting students’ understanding) and sharing and discussing with peers their ways to work on mathematical activities. Further, it was recognized that students’ learning of mathematics takes place within a sociocultural environment (situated learning) that promotes the students’ interaction in small groups, pairs, and whole group discussions. Thus, problem-solving environments transited from teachers being a main figure to organize learning activities and to model problem-solving behaviours to being centred on students’ active participation to work on a variety of mathematical tasks as a part of a learning community (Lester & Cai, 2016 ). English ( 2023 ) proposed A STEM-based problem-solving framework that addresses the importance of a multidisciplinary approach and experiences to work on complex problems. Here, students develop a system of inquiry that integrates critical thinking, mathematical modelling, and a creative and innovative approach to deal with problematic situations situated in contexts beyond school problems. The STEM-based problem-solving framework enhances and favours the students’ development of multidisciplinary thinking to formulate and approach challenging problematic situations. To this end, they need to problematize information to characterize local and global problems and to collaboratively work on feasible approaches and solutions. It integrates 21st century skills that include an inquiry problem-solving approach to develop and exhibit critical thinking, creativity, and innovative solutions.
5.1.3 Countries or regional education traditions and their influence on the problem-solving agenda
The emergence of problem-solving frameworks takes place within an educational and socio-cultural context that provides conditions for their development and dissemination, but also limitations in their applications inside the mathematics education community. Brady et al. ( 2023 ) pointed out that:
…shifts in the theoretical frameworks of mathematics education researchers favored a widening of the view on problem solving from information-processing theories toward sociocultural theories that encouraged a conception of problem-solving as situated cognition unfolding within a community of practice (p. 34).
In addition, regional or national educational systems and research traditions also shape the problem-solving research and practice agenda. For example, in France, problem-solving approaches and research are framed in terms of two relevant theoretical and practical frameworks: Theory of Didactic Situation and the Anthropological Theory of Didactics (Artigue & Houdement, 2007 ). While, in the Netherlands, problem-solving approaches are situated within the theory of Realistic Mathematics that encourages and supports the students’ construction of meaning of concepts and methods in terms of modelling real-life and mathematical situations (Doorman et al., 2007 ). Ding et al. ( 2022 ) stated that the Chinese educational system refers to problem solving as an instructional goal and an approach to learn mathematics. Here, students deal with different types of problem-solving activities that include finding multiple solutions to one problem, one solution to multiple problems, and one problem multiple changes. Thus, ‘teaching with variation’ is emphasized in Chinese instruction in terms of “variations in solutions, presentations, and conditions/conclusions” (p. 482). Cai and Rott ( 2023 ) proposed a general problem-posing process model that distinguishes four problem-posing phases: Orientation (understanding the situation and what is required or is asked to pose); Connection that involves finding out or generating ideas and strategies to pose problems in different ways such as varying the given situation, or posing new problems; Generation refers to making the posed problem visible for others to understand it; and Reflection involves reflecting on her/his own process to pose the problem including ways to improve problem statements. The challenge in this model is to make explicit how the use of digital technologies can contribute to providing conditions for students to engage in all phases around problem- posing process.
5.1.4 Curriculum proposals and problem-solving teaching/learning scenarios
In the USA, the Common Core State Mathematics Standards curriculum proposal (CCSMS) identifies problem solving as a process standard that supports core mathematical practices that involve reasoning and proof, communication, representation, and connections. Thus, making sense of problems and persevering in solving them, reasoning abstractly and quantitatively, constructing viable arguments and critiquing the reasoning of others, modelling with mathematics, etc. are essential activities for students to develop mathematics proficiency and problem-solving approaches (Schoenfeld, 2023 ). In Singapore, the curriculum proposal identifies problem solving as the centre of its curriculum framework that relates its development with the study of concepts, skills, processes, attitudes, and metacognition (Lee et al., 2019 ). Recently, educational systems have begun to reform curriculum proposals to relate what the use of digital technologies demands in terms of selecting and structuring mathematical contents and ways to extend instructional settings (Engelbrecht & Borba, 2023 ). Indeed, Engelbrecht et al. ( 2023 ) identify what they call a classroom in movement or a distributed classroom - that transforms traditional cubic spaces to study the discipline into a movable setting that might combine remote and face-to-face students work.
It is argued that previous results in mathematical problem-solving research not only have contributed to recognize what is relevant and what common tenets distinguish and support problem-solving approaches; but also have provided bases to identify and pursue current problem-solving developments and directions. Hence, the consistent and coordinated use of several digital technologies and online developments (teaching and learning platforms) has opened new routes for learners to represent, explore, and work on mathematical problems; and to engage them in mathematical discussions beyond formal class settings. How does the students’ use of digital technologies expand the ways they reason and solve mathematical problems? What changes in classroom environments and physical settings are needed to recognize and include students’ face-to-face and remote work? (Engelbrecht et al., 2023 ).
In the next sections, the goal is to characterize the extent to which the consistent use of digital technologies and online developments provides affordances to restructure mathematical curriculum proposals and classrooms or learning settings and to enhance and expand students’ mathematical reasoning.
6 Current mathematical problem-solving trends and developments: the use of digital technologies
Although the use of technologies has been a recurrent theme in research studies, curriculum proposals, and teaching practices in mathematics education; during the COVID-pandemic lockdown, all teachers and students relied on digital technologies to work on mathematical tasks. At different phases, they developed and implemented not only novel paths to present, discuss, and approach teaching/learning activities; but also, ways to monitor and assess students’ problem-solving performances. When schools returned to teachers and students’ face-to-face activities, some questions emerged: What adjustments or changes in school practices are needed to consider and integrate those learning experiences that students developed during the social confinement? What digital tools should teachers and students use to work on mathematical tasks? How should teaching/learning practices reconcile students remote and face-to-face work? To address these questions, recent studies that involve ways to integrate technology in educational practices were reviewed, and their main themes and findings are organized and problematized to shed light on what the use of digital technologies contributes to frame and support learning environments.
6.1 The use of technology to reconceptualize students mathematical learning
There are different studies that document the importance and ways in which the students’ use of tools such as CAS or Excel offers an opportunity for them to think of concepts and problems in terms of different representations to transit from intuitive, visual, or graphic to formal or analytical reasoning (Arcavi et al., 2017 ). Others digital technologies, such as a Dynamic Geometry System Footnote 1 DGS, provide affordances for students to dynamically represent and explore mathematical problems. In students’ use of digital technologies, the problematizing principle becomes relevant to transform the tool into an instrument to work on mathematical tasks. Santos-Trigo ( 2019 ) provides examples where students rely on GeoGebra affordances to reconstruct figures that are given in problem statements; to transform routine problem into an investigation task; to model and explore tasks that involve variational reasoning; and to construct dynamic configurations to formulate and support mathematical relations. In this process, students not only exhibit diverse problem-solving strategies; but also, identify and integrate and use different concepts and resources that are studied in algebra, geometry, and calculus. That is, the use of technology provides an opportunity for students to integrate and connect knowledge from diverse areas or domains. For instance, Sinclair and Ferrara ( 2023 ) used the multi-touch application (TouchCounts) for children to work on mathematical challenging tasks.
6.2 The use of digital technologies to design a didactic route
There is indication, that the use of digital technologies offers different paths for students to learn mathematics (Leung & Bolite-Frant, 2015 ; Leung & Baccaglini-Frank, 2017 ). For instance, in the construction of a dynamic model of a problem, they are required to think of concepts and information embedded in the problem in terms of geometric representation or meaning. Thus, focusing on ways for students to represent and explore concepts geometrically could be the departure point to understand concepts and to solve mathematical problems. In addition, students can explore problems’ dynamic models (dragging schemes) in terms of visual, empirical, and graphic representations to initially identify relations that become relevant to approach and solve the problems. Thus, tool affordances become relevant for students to detect patterns, to formulate conjectures and to transit from empirical to formal argumentation to support problem solutions (Pittalis & Drijvers, 2023 ). Engelbrecht and Borba ( 2023 ) recognized that the prominent use of digital technologies in school mathematics has produced pedagogical shifts in teaching and learning practices to “encourage more active students learning, foster greater engagement, and provide more flexible access to learning’ (p. 1). Multiple use technologies such as internet, communication apps (ZOOM, Teams, Google Meet, etc.) become essential tools for teachers and students to present, communicate, and share information or to collaborate with peers. While tools used to represent, explore, and delve into concepts and to work and solve mathematical problems (Dynamic Geometry Systems, Wolframalpha, etc.) expand the students’ ways of reasoning and solving problems. Both types of technologies are not only important for teachers and students to continue working on school tasks beyond formal settings, but they also provide students with an opportunity to consult online resources such as Wikipedia or KhanAcademy to review or extend their concepts understanding, to analyse solved problems, and to contrast their teachers’ explanation of themes or concepts with those provided in learning platforms.
6.3 Students’ access to mathematics learning
Nowadays, cell phones are essential tools for people or students to interact or to approach diverse tasks and an educational challenge is how teachers/students can use them to work on mathematical tasks. During the COVID-19 social confinement, students relied on communication apps not only to interact with their teachers during class lectures; but also, to keep discussing tasks with peers beyond formal class meetings. That is, students realized that with the use of technology they could expand their learning space to include sharing and discussing ideas and problem solutions with peers beyond class sessions, consulting online learning platforms or material to review or extend their concepts understanding, and to watch videos to contrast experts’ concepts explanations and those provided by their teachers. In this perspective, the use of digital technologies increases the students’ access to different resources and the ways to work on mathematical tasks. Thus, available digital developments seem to extend the students collaborative work in addition to class activities. Furthermore, the flipped classroom model seems to offer certain advantages for students to learn the discipline and this model needs to be analysed in terms of what curriculum changes and ways to assess or monitor students learning are needed in its design and implementation (Cevikbas & Kaiser, 2022 ).
6.4 Changes in curriculum and mathematical assessment
It is recognized that the continuous development and availability of digital technologies is not only altering the ways in which individuals interact and face daily activities; but is also transforming educational practices and settings. Likewise, people’s concerns about multiple events or global problems such climate change, immigration, educational access, renewable resources, or racial conflicts or wars are themes that permeate the educational arena. Thus, curriculum reforms should address ways to connect students’ education with the analysis of these complex problems. English ( 2023 ) stated that:
The ill-defined problems of today, coupled with unexpected disruptions across all walks of life, demand advanced problem-solving by all citizens. The need to update outmoded forms of problem solving, which fail to take into account increasing global challenges, has never been greater (p.5).
In this perspective, mathematics curriculum needs to be structured around essential contents and habits of mathematical thinking for students to understand and make sense of real-world events that lead them to formulate, represent, and deal with a variety of problem situations. “Educators now increasingly seek to emphasise the practical applications of mathematics, such as modelling real-life scenarios and understanding statistical data (Engelbrecht & Borba, 2023 , p. 7). For instance, during the pandemic it was important to problematize the available data to follow, analyze and predict its spread behavior and to propose health measures to reduce people contagion. Thus, exponential functions, graphics, and their interpretations, data analysis, etc. were important mathematics content to understand the pandemic phenomena. Drijvers and Sinclair ( 2023 ) recognized that features of computational thinking share common grounds with mathematical thinking in terms of problem-solving activities that privilege model construction, the use of algorithms, abstraction processes and generalization of results. Thus, “a further integration of computational thinking in the mathematics curriculum is desirable”. In terms of ways to assess and monitor students’ learning, the idea is that with the use of a digital tool (digital wall or log), students could organize, structure, register, and monitor their individual and group work and learning experiences. That is, they could periodically report and share what difficulties they face to understand concepts or to work on a task, what questions they posed, what sources consult, etc. The information that appears in the digital wall is shared within the group and the teacher and students can provide feedback or propose new ideas or solutions (Santos-Trigo et al., 2022 ).
6.5 The integration of technologies and the emergence of conceptual frameworks
Institutions worldwide, in general, are integrating the use of different technologies in their educational practices, and they face the challenge to reconcile previous pandemic models and post confinement learning scenarios. “A pedagogical reason for using technology is to empower learners with extended or amplified abilities to acquire knowledge…technology can empower their cognitive abilities to reason in novice ways (Leung, 2011 , p. 327). Drijvers and Sinclair ( 2023 ) proposed a five-dimensional framework to delve into the rationale and purposes for the mathematics education community to integrate the use of digital technologies in mathematical teaching environments and students learning. The five interrelated categories address issues regarding how teachers and students’ use of digital technology contributes to reconceptualize and improve mathematics learning; to understand and explain how students’ mathematics learning develops; to design environments for mathematics learning; to foster and provide equitable access to mathematics learning; and to change mathematics curricula and teaching and assessment practices (Drijvers & Sinclair, 2023 ). Schoenfeld ( 2022 ) stated that “The challenge is to create robust learning environments that support every student in developing not only the knowledge and practices that underlie effective mathematical thinking, but that help them develop the sense of agency to engage in sense making” (p. 764). Højsted et al. ( 2022 ) argue about the importance of adjusting theoretical frameworks to explicitly integrate the use of digital technologies such as DGS and Computer Algebra Systems (CAS) in teaching practices. They referred to the Danish “Competencies and Mathematical Learning framework” (KOM) that gets articulated through tenets associated with the Theory of Instrumental Orchestration (TIO) and the notion of Justification Mediation (JM). In general terms, the idea is that learners get explicitly involved in a tool’ appropriation process that transforms the artifact into an instrument to understand concepts and to solve mathematical problems. That is, learners’ tool appropriation involves the development of cognitive schemata to rely on technology affordances to work on mathematical tasks. Koichu et al. ( 2022 ) pointed out that the incorporation of problem-solving approaches in instruction should be seen as a specific case of implementing innovation. To this end, they proposed a framework of problem-solving implementation chain that involves “a sequence of actions and interactions beginning with the development of a PS resource by researchers, which teachers then engage with in professional development (PD), and finally, teachers and students make use of in classrooms” (p. 4). In this case, problem-solving resources include the design of problematic situations (tasks) to engage students in mathematical discussions to make sense of problem statements or to ask them to pose a task.
7 Reflections and concluding remarks
Throughout different periods, the research and practice mathematical problem-solving agenda has contributed significantly to understand not only essentials in mathematical practices; but also, the development of conceptual frameworks to explain and document subjects’ cognitive, social, and affective behaviours to understand mathematical concepts and to develop problem-solving competencies. Leikin and Guberman ( 2023 ) pointed out that “…problem-solving is an effective didactical tool that allows pupils to mobilize their existing knowledge, construct new mathematical connections between known concepts and properties, and construct new knowledge in the process of overcoming challenges embedded in the problems” (p. 325). The study of people cognitive functioning to develop multidisciplinary knowledge and to solve problems involves documenting ways in which individuals make decisions regarding ways to organize their subject or disciplinary learning (how to interact with teachers or experts and peers; what material to consult, what tools to use, how to monitor their own learning, etc.) and to engage in disciplinary practices to achieve their learning goals. Both strategic and tactic decisions shape teachers and students’ ways to work on mathematical tasks. Kahneman ( 2011 ) shed light on how human beings make decisions to deal with questions and problematic situations. He argues that individuals rely on two systems to make decisions and engage in thinking processes; system one (fast thinking) that involves automatic, emotional, instinctive reasoning and system two (slow thinking) that includes logical, deliberative, effortful, or conscious reasoning. In educational tasks, the idea is that teachers and students develop experiences based on the construction and activation of system two. Thus, how teachers/students decide what tools or digital developments to use to work on mathematical problems becomes a relevant issue to address in the mathematics education agenda. Recent and consistent developments and the availability of digital technologies open novel paths for teachers and students to represent, explore, and approach mathematical tasks and, provide different tools to extend students and teachers’ mathematical discussions beyond classroom settings. In this perspective, it becomes important to discuss what changes the systematic use of digital technologies bring to the mathematics contents and to the ways to frame mathematical instruction. For example, the use of a Dynamic Geometry System to model and explore calculus, geometry or algebra classic problems dynamically not only offer students an opportunity to connect foundational concepts such as rate of change or the perpendicular bisector concept to geometrically study variational phenomena or conic sections; but also, to engage them in problem-posing activities (Santos-Trigo et al., 2021 ). Thus, teachers need to experience themselves different ways to use digital technologies to work on mathematical tasks and to identify instructional paths for students to internalize the use of digital apps as an instrument to understand concepts and to pose and formulate mathematical problems. Specifically, curriculum proposal should be structured around the development of foundational concepts and problem-solving strategies to formulate and pursue complex problems such as those involving climate changes, wealth distribution, immigration, pollution, mobility, connectivity, etc. To formulate and approach these problems, students need to develop a multidisciplinary thinking and rely on different tools to represent, explore, and share and continuously report partial solutions. To this end, they are encouraged to work with peers and groups as a part of learning community that fosters and values collective problem solutions. Finding multiple paths to solve problems becomes important for students to develop creative and innovative problem solutions (Leikin & Guberman, 2023 ). In this perspective, learning environments should provide conditions for students to transform digital applications in problem-solving tools to work on problematic situations. Online students’ assignments become an important component to structure and organize students and teachers’ face-to-face interactions. Likewise, the use of technology can also provide a tool for students to register and monitor their work and learning experiences. A digital wall or a problem-solving digital notebook (Santos-Trigo et al., 2022 ) could be introduced for students to register and monitor their learning experiences. Here, Students are asked to record on a weekly basis their work, questions, comments, and ideas that include: Questions they pose to understand concepts and problem statements; online resources and platforms they consult to contextualize problems and review and extend their understanding of involved concepts; concepts and strategies used to solve problems through different approaches; the Identification of other problems that can be solved with the methods that were used to solve the problem; digital technologies and online resources used to work on and solve the problem; dynamic models used to solve the problem and strategies used to identify and explore mathematical relations (dragging objects, measuring object attributes, tracing loci, using sliders, etc.; the formulation of new related problems including possible extensions for the initial problem; discussion of solutions of some new problems; and short recorded video presentation of their work and problem solutions. That is, the digital wall becomes an space for learners to share their work and to contrast and reflect on their peers work including extending their problem-solving approaches based on their teachers feedback and peers’ ideas or solutions.
The term Dynamic Geometry System is used, instead of Dynamic Geometry Environment or Dynamic Geometry Software, to emphasize that the app or tool interface encompasses a system of affordances that combines the construction of dynamic models, the use of Computer Algebra Systems and the use spreadsheet programs.
Arcavi, A., Drijvers, P., & Stacy, K. (2017). The learning and teaching of algebra. Ideas, insights, and activities . NY: Routledge. ISBN 9780415743723.
Artigue, M., & Houdement, C. (2007). Problem solving in France: Didactic and curricular perspectives. ZDM Int J Math Educ , 39 (5–6), 365–382. https://doi.org/10.1007/s11858-007-0048-x .
Article Google Scholar
Berger, W. (2014). A more beautiful question . Bloomsbury Publishing. Kindle Edition.
Brady, C., Ramírez, P., & Lesh, R. (2023). Problem posing and modeling: Confronting the dilemma of rigor or relevance. In T. L. Toh et al. (Eds.), Problem Posing and Problem Solving in Mathematics Education, pp: 33–50, Singapore: Springer. https://doi.org/10.1007/978-981-99-7205-0_3 .
Cai, J., & Hwang, S. (2023). Making mathematics challenging through problem posing in classroom. In R. Leikin (Ed.), Mathematical Challenges For All , Research in Mathematics Education, Springer: Switzerland, pp. 115–145, https://doi.org/10.1007/978-3-031-18868-8_7 .
Cai, J., & Rott, B. (2023). On understanding mathematical problem-posing processes. ZDM – Mathematics Education , 56 , 61–71. https://doi.org/10.1007/s11858-023-01536-w .
Cai, J., Hwang, S., & Melville, M. (2023). Mathematical problem-posing research: Thirty years of advances building on the publication of on mathematical problem solving. In J. Cai et al. (Eds.), Research Studies on Learning and Teaching of Mathematics, Research in Mathematics Education, Springer: Switzerland, pp: 1–25. https://doi.org/10.1007/978-3-031-35459-5_1 .
Cevikbas, M., & Kaiser, G. (2022). Can flipped classroom pedagogy offer promising perspectives for mathematics education on pan- demic-related issues? A systematic literature review. ZDM – Math- ematics Education . https://doi.org/10.1007/s11858-022-01388-w .
Cuoco, A., Goldenberg, E. P., & Mark, J. (1996). Habits of mind: An organizing principle for mathematics curricula. Journal of Mathematical Behavior , 15 , 375–402.
Devlin, K. (2002). The millennium problems. The seven greatest unsolved mathematical puzzles of our time . Granta.
Dick, T. P., & Hollebrands, K. F. (2011). Focus in high school mathematics: Technology to support reasoning and sense making . National Council of Teachers of Mathematics, NCTM: Reston Va. ISBN 978-0-87353-641-7.
Ding, M., Wu, Y., Liu, Q., & Cai, J. (2022). Mathematics learning in Chinese contexts. ZDM -Mathematics Education , 54 , 577–496. https://doi.org/10.1007/s11858-022-01385-z .
Doorman, M., Drijvers, P., Dekker, T., Van den Heuvel- Panhuizen, M., de Lange, J., & Wijers, M. (2007). Problem solving as a challenge for mathematics education in the Netherlands. ZDM Int J Math Educ , 39 (5–6), 405–418. https://doi.org/10.1007/s11858-007-0043-2 .
Drijvers, P., & Sinclair, N. (2023). The role of digital technologies in mathematics education: Purposes and perspectives. ZDM-Mathematics Education . https://doi.org/10.1007/s11858-023-01535-x .
Engelbrecht, J., & Borba, M. C. (2023). Recent developments in using digital technology in mathematics education. ZDM -Mathematics Education . https://doi.org/10.1007/s11858-023-01530-2 .
Engelbrecht, J., Borba, M. C., & Kaiser, G. (2023). Will we ever teach mathematics again in the way we used to before the pandemic? ZDM– Mathematics Education , 55 , 1–16. https://doi.org/10.1007/s11858-022-01460-5 .
English, L. D. (2023). Ways of thinking in STEM-based problem solving. ZDM -Mathematics Education . https://doi.org/10.1007/s11858-023-01474-7 .
English, L. D., & Kirshner, D. (Eds.). (2016). Handbook of international research in mathematics education . NY. ISBN: 978-0-203-44894-6 (ebk). https://www.routledge.com/Handbook-of-International-Research-in-Mathematics-Education/English-Kirshner/p/book/9780415832045
Fried, M. N. (2014). Mathematics & mathematics education: Searching for common ground. In M.N. Fried, T. Dreyfus (Eds.), Mathematics & Mathematics Education: Searching for 3 Common Ground , Advances in Mathematics Education, pp: 3–22. https://doi.org/10.1007/978-94-007-7473-5_1 . NY: Springer.
Halmos, P. (1980). The heart of mathematics. American Mathematical Monthly , 87 (7), 519–524.
Hiebert, J., Carpenter, T. P., Fennema, E., Fuson, K., Human, P., Murray, H., et al. (1996). Problem solving as a basis for reform in curriculum and instruction: The case of mathematics. Educational Researcher , 25 (4), 12–21.
Hilbert, D. (1902). Mathematical problems. Bulletin of the American Mathematical Society , 8 , 437–479.
Højsted, I. H., Geranius, E., & Jankvist, U. T. (2022). Teachers’ facilitation of students’ mathematical reasoning in a dynamic geometry environment: An analysis through three lenses. In U. T. Jankvist, & E. Geraniou (Eds.), Mathematical competencies in the Digital era (pp. 271–292). Springer. https://doi.org/10.1007/978-3-031-10141-0_15 .
Kahneman, D. (2011). Thinking, fast and slow . Farrar, Straus and Giroux.
Koichu, B. (2014). Problem solving in mathematics and in mathematics education. In M.N. Fried, T. Dreyfus (Eds.), Mathematics & Mathematics Education: Searching for 113 Common Ground , Advances in Mathematics Education, pp: 113–135. Dordrecht: Springer. https://doi.org/10.1007/978-94-007-7473-5_8 .
Koichu, B., Cooper, J., & Widder, M. (2022). Implementation of problem solving in school: From intended to experienced. Implementation and Replication Studies in Mathematics Education , 2 (1), 76–106. https://doi.org/10.1163/26670127-bja10004 .
Krutestkii, V. A. (1976). The psychology of mathematical abilities in school children . University of Chicago Press, Chicago. ISBN: 0-226-45492-4.
Lee, N. H., Ng, W. L., & Lim, L. G. P. (2019). The intended school mathematics curriculum. In T. L. Toh et al. (Eds.), Mathematics Education in Singapore , Mathematics Education – An Asian Perspective, pp: 35–53. https://doi.org/10.1007/978-981-13-3573-0_3 .
Leikin, R., & Guberman, R. (2023). Creativity and challenge: Task complexity as a function of insight and multiplicity of solutions. R. Leikin (Ed.), Mathematical Challenges For All , Research in Mathematics Education, pp: 325–342. https://doi.org/10.1007/978-3-031-18868-8_17 .
Lester, F. K. Jr. (1994). Musing about mathematical problem-solving research: 1970–1994. Journal for Research in Mathematics Education , 25 (6), 660–675.
Lester, F. K. Jr. (2005). On the theoretical, conceptual, and philosophical foundation for research in mathematics education. Zdm Mathematics Education , 37 (6), 457–467. https://doi.org/10.1007/BF02655854 .
Lester, F. K. Jr., & Cai, J. (2016). Can mathematical problem solving be taught? Preliminary answers from 30 years of research. In P. Felmer, et al. (Eds.), Posing and solving Mathematical problems, Research in Mathematics Education (pp. 117–135). Springer. https://doi.org/10.1007/978-3-319-28023-3_8 .
Leung, A. (2011). An epistemic model of task design in dynamic geometry environment. Zdm , 43 , 325–336. https://doi.org/10.1007/s11858-011-0329-2 .
Leung, A., & Baccaglini-Frank, A. (Eds.). (2017). (Eds.). Digital Technologies in Designing Mathematics Education Tasks, Mathematics Education in the Digital Era 8, https://doi.org/10.1007/978-3-319-43423-0_1 .
Leung, A., & Bolite-Frant, J. (2015). Designing mathematics tasks: The role of tools. In A. Watson, & M. Ohtani (Eds.), Task design in mathematics education (pp. 191–225). New ICMI Study Series. https://doi.org/10.1007/978-3-319-09629-2_6 .
Liljedahl, P., & Cai, J. (2021). Empirical research on problem solving and problem pos- ing: A look at the state of the art. ZDM — Mathematics Education , 53 (4), 723–735. https://doi.org/10.1007/s11858-021-01291-w .
Pittalis, M., & Drijvers, P. (2023). Embodied instrumentation in a dynamic geometry environment: Eleven-year‐old students’ dragging schemes. Educational Studies in Mathematics , 113 , 181–205. https://doi.org/10.1007/s10649-023-10222-3 .
Pólya, G. (1945).; 2nd edition, 1957). How to solve it . Princeton University Press.
Rott, B., Specht, B., & Knipping, C. (2021). A descritive phase model of problem-solving processes. ZDM -Mathematics Education , 53 , 737–752. https://doi.org/10.1007/s11858-021-01244-3 .
Santos-Trigo, M. (2019). Mathematical Problem Solving and the use of digital technologies. In P. Liljedahl and M. Santos-Trigo (Eds.). Mathematical Problem Solving. ICME 13 Monographs , ISBN 978-3-030-10471-9, ISBN 978-3-030-10472-6 (eBook), Springer Nature Switzerland AG. Pp. 63–89 https://doi.org/10.1007/978-3-030-10472-6_4 .
Santos-Trigo, M. (2020a). Problem-solving in mathematics education. In S. Lerman (Ed.), Encyclopedia of mathematics education (pp. 686–693). Springer. https://doi.org/10.1007/978-3-030-15789-0 .
Santos-Trigo, M. (2020b). Prospective and practicing teachers and the use of digital technologies in mathematical problem-solving approaches. In S. Llinares and O. Chapman (Eds.), International handbook of mathematics teacher education , vol 2, pp: 163–195. Boston: Brill Sense, ISBN 978-90-04-41896-7.
Santos-Trigo, M. (Ed.). (2023). Trends and developments of mathematical problem-solving research to update and support the use of digital technologies in post-confinement learning spaces. InT. L. Toh (Eds.), Problem Posing and Problem Solving in Mathematics Education , pp: 7–32. Springer Nature Singapore. https://doi.org/10.1007/978-981-99-7205-0_2 .
Santos-Trigo, M., & Reyes-Martínez, I. (2019). High school prospective teachers’ problem-solving reasoning that involves the coordinated use of digital technologies. International Journal of Mathematical Education in Science and Technology , 50 (2), 182–201. https://doi.org/10.1080/0020739X.2018.1489075 .
Santos-Trigo, M., Barrera-Mora, F., & Camacho-Machín, M. (2021). Teachers’ use of technology affordances to contextualize and dynamically enrich and extend mathematical problem-solving strategies. Mathematics , 9 (8), 793. https://doi.org/10.3390/math9080793 .
Santos-Trigo, M., Reyes-Martínez, I., & Gómez-Arciga, A. (2022). A conceptual framework to structure remote learning scenarios: A digital wall as a reflective tool for students to develop mathematics problem-solving competencies. Int J Learning Technology , 27–52. https://doi.org/10.1504/IJLT.2022.123686 .
Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics. In D. A. Grows (Ed.), Handbook of research on mathematics teaching and learning (pp. 334–370). Macmillan.
Schoenfeld, A. H. (2020). Mathematical practices, in theory and practice. ZDM Mathematics Education, 52, pp: 1163–1175. https://doi.org/10.1007/s11858-020-01162-w .
Schoenfeld, A. H. (2022). Why are learning and teaching mathematics so difficult? In M. Danesi (Ed.), Handbook of cognitive mathematics (pp. 1–35). Switzerland. https://doi.org/10.1007/978-3-030-44982-7_10-1%23DOI .
Schoenfeld, A. H. (2023). A theory of teaching. In A. K. Praetorius, & C. Y. Charalambous (Eds.), Theorizing teaching (pp. 159–187). Springer. https://doi.org/10.1007/978-3-031-25613-4_6 .
Sinclair, N., & Ferrara, F. (2023). Towards a Socio-material Reframing of Mathematically Challenging Tasks. In R. Leikin (Ed.), Mathematical Challenges For All , Research in Mathematics Education, pp: 307–323. https://doi.org/10.1007/978-3-031-18868-8_16 .
Stake, R. E. (2000). Case studies. In N. K. Denzin, & Y. S. Lincoln (Eds.), Handbook of qualitative research (pp. 435–454). Sage.
Thurston, P. W. (1994). On proof and progress in mathematics. Bull Amer Math Soc , 30 (2), 161–177.
Toh, T. L., Santos-Trigo, M., Chua, P. H., Abdullah, N. A., & Zhang, D. (Eds.). (2023). Problem posing and problem solving in mathematics education: Internationa research and practice trends . Springer Nature Singpore. https://doi.org/10.1007/978-981-99-7205-0 .
Törner, G., Schoenfeld, A. H., & Reiss, K. M. (Eds.). (2007). Problem solving around the world: Summing up the state of the art [Special Issue]. ZDM — Mathematics Education , 39 (5–6). https://doi.org/10.1007/s11858-007-0053-0 .
Download references
Author information
Authors and affiliations.
Centre for Research and Advanced Studies, Mathematics Education Department, Mexico City, Mexico
Manuel Santos-Trigo
You can also search for this author in PubMed Google Scholar
Corresponding author
Correspondence to Manuel Santos-Trigo .
Additional information
Publisher’s note.
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .
Reprints and permissions
About this article
Santos-Trigo, M. Problem solving in mathematics education: tracing its foundations and current research-practice trends. ZDM Mathematics Education 56 , 211–222 (2024). https://doi.org/10.1007/s11858-024-01578-8
Download citation
Accepted : 18 April 2024
Published : 30 April 2024
Issue Date : May 2024
DOI : https://doi.org/10.1007/s11858-024-01578-8
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
- Mathematical problem solving
- Conceptual frameworks
- Digital and semiotic tools-
- Mathematical reasoning
- Mathematics education developments
- Digital technologies
- Find a journal
- Publish with us
- Track your research
Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.
5 Teaching Mathematics Through Problem Solving
Janet Stramel
In his book “How to Solve It,” George Pólya (1945) said, “One of the most important tasks of the teacher is to help his students. This task is not quite easy; it demands time, practice, devotion, and sound principles. The student should acquire as much experience of independent work as possible. But if he is left alone with his problem without any help, he may make no progress at all. If the teacher helps too much, nothing is left to the student. The teacher should help, but not too much and not too little, so that the student shall have a reasonable share of the work.” (page 1)
What is a problem in mathematics? A problem is “any task or activity for which the students have no prescribed or memorized rules or methods, nor is there a perception by students that there is a specific ‘correct’ solution method” (Hiebert, et. al., 1997). Problem solving in mathematics is one of the most important topics to teach; learning to problem solve helps students develop a sense of solving real-life problems and apply mathematics to real world situations. It is also used for a deeper understanding of mathematical concepts. Learning “math facts” is not enough; students must also learn how to use these facts to develop their thinking skills.
According to NCTM (2010), the term “problem solving” refers to mathematical tasks that have the potential to provide intellectual challenges for enhancing students’ mathematical understanding and development. When you first hear “problem solving,” what do you think about? Story problems or word problems? Story problems may be limited to and not “problematic” enough. For example, you may ask students to find the area of a rectangle, given the length and width. This type of problem is an exercise in computation and can be completed mindlessly without understanding the concept of area. Worthwhile problems includes problems that are truly problematic and have the potential to provide contexts for students’ mathematical development.
There are three ways to solve problems: teaching for problem solving, teaching about problem solving, and teaching through problem solving.
Teaching for problem solving begins with learning a skill. For example, students are learning how to multiply a two-digit number by a one-digit number, and the story problems you select are multiplication problems. Be sure when you are teaching for problem solving, you select or develop tasks that can promote the development of mathematical understanding.
Teaching about problem solving begins with suggested strategies to solve a problem. For example, “draw a picture,” “make a table,” etc. You may see posters in teachers’ classrooms of the “Problem Solving Method” such as: 1) Read the problem, 2) Devise a plan, 3) Solve the problem, and 4) Check your work. There is little or no evidence that students’ problem-solving abilities are improved when teaching about problem solving. Students will see a word problem as a separate endeavor and focus on the steps to follow rather than the mathematics. In addition, students will tend to use trial and error instead of focusing on sense making.
Teaching through problem solving focuses students’ attention on ideas and sense making and develops mathematical practices. Teaching through problem solving also develops a student’s confidence and builds on their strengths. It allows for collaboration among students and engages students in their own learning.
Consider the following worthwhile-problem criteria developed by Lappan and Phillips (1998):
- The problem has important, useful mathematics embedded in it.
- The problem requires high-level thinking and problem solving.
- The problem contributes to the conceptual development of students.
- The problem creates an opportunity for the teacher to assess what his or her students are learning and where they are experiencing difficulty.
- The problem can be approached by students in multiple ways using different solution strategies.
- The problem has various solutions or allows different decisions or positions to be taken and defended.
- The problem encourages student engagement and discourse.
- The problem connects to other important mathematical ideas.
- The problem promotes the skillful use of mathematics.
- The problem provides an opportunity to practice important skills.
Of course, not every problem will include all of the above. Sometimes, you will choose a problem because your students need an opportunity to practice a certain skill.
Key features of a good mathematics problem includes:
- It must begin where the students are mathematically.
- The feature of the problem must be the mathematics that students are to learn.
- It must require justifications and explanations for both answers and methods of solving.
Problem solving is not a neat and orderly process. Think about needlework. On the front side, it is neat and perfect and pretty.
But look at the b ack.
It is messy and full of knots and loops. Problem solving in mathematics is also like this and we need to help our students be “messy” with problem solving; they need to go through those knots and loops and learn how to solve problems with the teacher’s guidance.
When you teach through problem solving , your students are focused on ideas and sense-making and they develop confidence in mathematics!
Mathematics Tasks and Activities that Promote Teaching through Problem Solving
Choosing the Right Task
Selecting activities and/or tasks is the most significant decision teachers make that will affect students’ learning. Consider the following questions:
- Teachers must do the activity first. What is problematic about the activity? What will you need to do BEFORE the activity and AFTER the activity? Additionally, think how your students would do the activity.
- What mathematical ideas will the activity develop? Are there connections to other related mathematics topics, or other content areas?
- Can the activity accomplish your learning objective/goals?
Low Floor High Ceiling Tasks
By definition, a “ low floor/high ceiling task ” is a mathematical activity where everyone in the group can begin and then work on at their own level of engagement. Low Floor High Ceiling Tasks are activities that everyone can begin and work on based on their own level, and have many possibilities for students to do more challenging mathematics. One gauge of knowing whether an activity is a Low Floor High Ceiling Task is when the work on the problems becomes more important than the answer itself, and leads to rich mathematical discourse [Hover: ways of representing, thinking, talking, agreeing, and disagreeing; the way ideas are exchanged and what the ideas entail; and as being shaped by the tasks in which students engage as well as by the nature of the learning environment].
The strengths of using Low Floor High Ceiling Tasks:
- Allows students to show what they can do, not what they can’t.
- Provides differentiation to all students.
- Promotes a positive classroom environment.
- Advances a growth mindset in students
- Aligns with the Standards for Mathematical Practice
Examples of some Low Floor High Ceiling Tasks can be found at the following sites:
- YouCubed – under grades choose Low Floor High Ceiling
- NRICH Creating a Low Threshold High Ceiling Classroom
- Inside Mathematics Problems of the Month
Math in 3-Acts
Math in 3-Acts was developed by Dan Meyer to spark an interest in and engage students in thought-provoking mathematical inquiry. Math in 3-Acts is a whole-group mathematics task consisting of three distinct parts:
Act One is about noticing and wondering. The teacher shares with students an image, video, or other situation that is engaging and perplexing. Students then generate questions about the situation.
In Act Two , the teacher offers some information for the students to use as they find the solutions to the problem.
Act Three is the “reveal.” Students share their thinking as well as their solutions.
“Math in 3 Acts” is a fun way to engage your students, there is a low entry point that gives students confidence, there are multiple paths to a solution, and it encourages students to work in groups to solve the problem. Some examples of Math in 3-Acts can be found at the following websites:
- Dan Meyer’s Three-Act Math Tasks
- Graham Fletcher3-Act Tasks ]
- Math in 3-Acts: Real World Math Problems to Make Math Contextual, Visual and Concrete
Number Talks
Number talks are brief, 5-15 minute discussions that focus on student solutions for a mental math computation problem. Students share their different mental math processes aloud while the teacher records their thinking visually on a chart or board. In addition, students learn from each other’s strategies as they question, critique, or build on the strategies that are shared.. To use a “number talk,” you would include the following steps:
- The teacher presents a problem for students to solve mentally.
- Provide adequate “ wait time .”
- The teacher calls on a students and asks, “What were you thinking?” and “Explain your thinking.”
- For each student who volunteers to share their strategy, write their thinking on the board. Make sure to accurately record their thinking; do not correct their responses.
- Invite students to question each other about their strategies, compare and contrast the strategies, and ask for clarification about strategies that are confusing.
“Number Talks” can be used as an introduction, a warm up to a lesson, or an extension. Some examples of Number Talks can be found at the following websites:
- Inside Mathematics Number Talks
- Number Talks Build Numerical Reasoning
Saying “This is Easy”
“This is easy.” Three little words that can have a big impact on students. What may be “easy” for one person, may be more “difficult” for someone else. And saying “this is easy” defeats the purpose of a growth mindset classroom, where students are comfortable making mistakes.
When the teacher says, “this is easy,” students may think,
- “Everyone else understands and I don’t. I can’t do this!”
- Students may just give up and surrender the mathematics to their classmates.
- Students may shut down.
Instead, you and your students could say the following:
- “I think I can do this.”
- “I have an idea I want to try.”
- “I’ve seen this kind of problem before.”
Tracy Zager wrote a short article, “This is easy”: The Little Phrase That Causes Big Problems” that can give you more information. Read Tracy Zager’s article here.
Using “Worksheets”
Do you want your students to memorize concepts, or do you want them to understand and apply the mathematics for different situations?
What is a “worksheet” in mathematics? It is a paper and pencil assignment when no other materials are used. A worksheet does not allow your students to use hands-on materials/manipulatives [Hover: physical objects that are used as teaching tools to engage students in the hands-on learning of mathematics]; and worksheets are many times “naked number” with no context. And a worksheet should not be used to enhance a hands-on activity.
Students need time to explore and manipulate materials in order to learn the mathematics concept. Worksheets are just a test of rote memory. Students need to develop those higher-order thinking skills, and worksheets will not allow them to do that.
One productive belief from the NCTM publication, Principles to Action (2014), states, “Students at all grade levels can benefit from the use of physical and virtual manipulative materials to provide visual models of a range of mathematical ideas.”
You may need an “activity sheet,” a “graphic organizer,” etc. as you plan your mathematics activities/lessons, but be sure to include hands-on manipulatives. Using manipulatives can
- Provide your students a bridge between the concrete and abstract
- Serve as models that support students’ thinking
- Provide another representation
- Support student engagement
- Give students ownership of their own learning.
Adapted from “ The Top 5 Reasons for Using Manipulatives in the Classroom ”.
any task or activity for which the students have no prescribed or memorized rules or methods, nor is there a perception by students that there is a specific ‘correct’ solution method
should be intriguing and contain a level of challenge that invites speculation and hard work, and directs students to investigate important mathematical ideas and ways of thinking toward the learning
involves teaching a skill so that a student can later solve a story problem
when we teach students how to problem solve
teaching mathematics content through real contexts, problems, situations, and models
a mathematical activity where everyone in the group can begin and then work on at their own level of engagement
20 seconds to 2 minutes for students to make sense of questions
Mathematics Methods for Early Childhood Copyright © 2021 by Janet Stramel is licensed under a Creative Commons Attribution 4.0 International License , except where otherwise noted.
IMAGES
VIDEO
COMMENTS
Educators can use many different strategies to teach problem-solving and help students develop and carry out a plan when solving math problems. Incorporate these math strategies into any math program and use them with a variety of math concepts, from whole numbers and fractions to algebra.
Interactive lessons make even complex ideas easy to grasp. Instant, custom feedback accelerates your understanding. Brush up on the basics or learn new skills. Designed for learners ages 13 to 113. Finish every day smarter with engaging lessons, competitive features, and daily encouragement.
Math learning enhances problem-solving skills, critical thinking, and logical reasoning abilities. (Source: National Council of Teachers of Mathematics ) It improves analytical skills that can be applied in various real-life situations, such as budgeting or analyzing data.
In tracing recent research trends and directions in mathematical problem-solving, it is argued that advances in mathematics practices occur and take place around two intertwined activities, mathematics problem formulation and ways to approach and solve those problems.
Problem solving in mathematics is one of the most important topics to teach; learning to problem solve helps students develop a sense of solving real-life problems and apply mathematics to real world situations. It is also used for a deeper understanding of mathematical concepts.
Developing students’ skills in solving mathematical problems and supporting creative mathematical thinking have been important topics of Finnish National Core Curricula 2004 and 2014. To foster these skills, students should be provided with rich, meaningful problem-solving tasks already in primary school.