Information

  • Author Services

Initiatives

You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader.

All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to https://www.mdpi.com/openaccess .

Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications.

Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers.

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Original Submission Date Received: .

  • Active Journals
  • Find a Journal
  • Journal Proposal
  • Proceedings Series
  • For Authors
  • For Reviewers
  • For Editors
  • For Librarians
  • For Publishers
  • For Societies
  • For Conference Organizers
  • Open Access Policy
  • Institutional Open Access Program
  • Special Issues Guidelines
  • Editorial Process
  • Research and Publication Ethics
  • Article Processing Charges
  • Testimonials
  • Preprints.org
  • SciProfiles
  • Encyclopedia

sustainability-logo

Article Menu

advantages of online learning research paper

  • Subscribe SciFeed
  • Recommended Articles
  • Google Scholar
  • on Google Scholar
  • Table of Contents

Find support for a specific problem in the support section of our website.

Please let us know what you think of our products and services.

Visit our dedicated information section to learn more about MDPI.

JSmol Viewer

Assessing the impact of online-learning effectiveness and benefits in knowledge management, the antecedent of online-learning strategies and motivations: an empirical study.

advantages of online learning research paper

1. Introduction

2. literature review and research hypothesis, 2.1. online-learning self-efficacy terminology, 2.2. online-learning monitoring terminology, 2.3. online-learning confidence in technology terminology, 2.4. online-learning willpower terminology, 2.5. online-learning attitude terminology, 2.6. online-learning motivation terminology, 2.7. online-learning strategies and online-learning effectiveness terminology, 2.8. online-learning effectiveness terminology, 3. research method, 3.1. instruments, 3.2. data analysis and results, 4.1. reliability and validity analysis, 4.2. hypothesis result, 5. discussion, 6. conclusions, 7. limitations and future directions, author contributions, institutional review board statement, informed consent statement, data availability statement, conflicts of interest.

  • UNESCO. COVID-19 Educational Disruption and Response ; UNESCO: Paris, France, 2020. [ Google Scholar ]
  • Moore, D.R. E-learning and the science of instruction: Proven guidelines for consumers and designers of multimedia learning. Educ. Technol. Res. Dev. 2006 , 54 , 197–200. [ Google Scholar ] [ CrossRef ]
  • McDonald, E.W.; Boulton, J.L.; Davis, J.L. E-learning and nursing assessment skills and knowledge–An integrative review. Nurse Educ. Today 2018 , 66 , 166–174. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Homan, S.R.; Wood, K. Taming the mega-lecture: Wireless quizzing. Syllabus Sunnyvale Chatsworth 2003 , 17 , 23–27. [ Google Scholar ]
  • Emran, M.A.; Shaalan, K. E-podium technology: A medium of managing knowledge at al buraimi university college via mlearning. In Proceedings of the 2nd BCS International IT Conference, Abu Dhabi, United Arab Emirates, 9–10 March 2014; pp. 1–4. [ Google Scholar ]
  • Tenório, T.; Bittencourt, I.I.; Isotani, S.; Silva, A.P. Does peer assessment in on-line learning environments work? A systematic review of the literature. Comput. Hum. Behav. 2016 , 64 , 94–107. [ Google Scholar ] [ CrossRef ]
  • Sheshasaayee, A.; Bee, M.N. Analyzing online learning effectiveness for knowledge society. In Information Systems Design and Intelligent Applications ; Bhateja, V., Nguyen, B., Nguyen, N., Satapathy, S., Le, D.N., Eds.; Springer: Singapore, 2018; pp. 995–1002. [ Google Scholar ]
  • Panigrahi, R.; Srivastava, P.R.; Sharma, D. Online learning: Adoption, continuance, and learning outcome—A review of literature. Int. J. Inform. Manag. 2018 , 43 , 1–14. [ Google Scholar ] [ CrossRef ]
  • Al-Rahmi, W.M.; Alias, N.; Othman, M.S.; Alzahrani, A.I.; Alfarraj, O.; Saged, A.A. Use of e-learning by university students in Malaysian higher educational institutions: A case in Universiti Teknologi Malaysia. IEEE Access 2018 , 6 , 14268–14276. [ Google Scholar ] [ CrossRef ]
  • Al-Rahmi, W.M.; Yahaya, N.; Aldraiweesh, A.A.; Alamri, M.M.; Aljarboa, N.A.; Alturki, U. Integrating technology acceptance model with innovation diffusion theory: An empirical investigation on students’ intention to use E-learning systems. IEEE Access 2019 , 7 , 26797–26809. [ Google Scholar ] [ CrossRef ]
  • Gunawan, I.; Hui, L.K.; Ma’sum, M.A. Enhancing learning effectiveness by using online learning management system. In Proceedings of the 6th International Conference on Education and Technology (ICET), Beijing, China, 18–20 June 2021; pp. 48–52. [ Google Scholar ]
  • Nguyen, P.H.; Tangworakitthaworn, P.; Gilbert, L. Individual learning effectiveness based on cognitive taxonomies and constructive alignment. In Proceedings of the IEEE Region 10 Conference (Tencon), Osaka, Japan, 16–19 November 2020; pp. 1002–1006. [ Google Scholar ]
  • Pee, L.G. Enhancing the learning effectiveness of ill-structured problem solving with online co-creation. Stud. High. Educ. 2020 , 45 , 2341–2355. [ Google Scholar ] [ CrossRef ]
  • Kintu, M.J.; Zhu, C.; Kagambe, E. Blended learning effectiveness: The relationship between student characteristics, design features and outcomes. Int. J. Educ. Technol. High. Educ. 2017 , 14 , 1–20. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Wang, M.H.; Vogel, D.; Ran, W.J. Creating a performance-oriented e-learning environment: A design science approach. Inf. Manag. 2011 , 48 , 260–269. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Hew, K.F.; Cheung, W.S. Students’ and instructors’ use of massive open online courses (MOOCs): Motivations and challenges. Educ. Res. Rev. 2014 , 12 , 45–58. [ Google Scholar ] [ CrossRef ]
  • Bryant, J.; Bates, A.J. Creating a constructivist online instructional environment. TechTrends 2015 , 59 , 17–22. [ Google Scholar ] [ CrossRef ]
  • Lee, M.C. Explaining and predicting users’ continuance intention toward e-learning: An extension of the expectation–confirmation model. Comput. Educ. 2010 , 54 , 506–516. [ Google Scholar ] [ CrossRef ]
  • Lin, K.M. E-Learning continuance intention: Moderating effects of user e-learning experience. Comput. Educ. 2011 , 56 , 515–526. [ Google Scholar ] [ CrossRef ]
  • Huang, E.Y.; Lin, S.W.; Huang, T.K. What type of learning style leads to online participation in the mixed-mode e-learning environment? A study of software usage instruction. Comput. Educ. 2012 , 58 , 338–349. [ Google Scholar ]
  • Chu, T.H.; Chen, Y.Y. With good we become good: Understanding e-learning adoption by theory of planned behavior and group influences. Comput. Educ. 2016 , 92 , 37–52. [ Google Scholar ] [ CrossRef ]
  • Bandura, A. Self-efficacy: Toward a unifying theory of behavioral change. Psychol. Rev. 1977 , 84 , 191–215. [ Google Scholar ] [ CrossRef ]
  • Torkzadeh, G.; Van Dyke, T.P. Development and validation of an Internet self-efficacy scale. Behav. Inform. Technol. 2001 , 20 , 275–280. [ Google Scholar ] [ CrossRef ]
  • Saadé, R.G.; Kira, D. Computer anxiety in e-learning: The effect of computer self-efficacy. J. Inform. Technol. Educ. Res. 2009 , 8 , 177–191. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Tucker, J.; Gentry, G. Developing an E-Learning strategy in higher education. In Proceedings of the SITE 2009–Society for Information Technology & Teacher Education International Conference, Charleston, SC, USA, 2–6 March 2009; pp. 2702–2707. [ Google Scholar ]
  • Wang, Y.; Peng, H.M.; Huang, R.H.; Hou, Y.; Wang, J. Characteristics of distance learners: Research on relationships of learning motivation, learning strategy, self-efficacy, attribution and learning results. Open Learn. J. Open Distance Elearn. 2008 , 23 , 17–28. [ Google Scholar ] [ CrossRef ]
  • Mahmud, B.H. Study on the impact of motivation, self-efficacy and learning strategies of faculty of education undergraduates studying ICT courses. In Proceedings of the 4th International Postgraduate Research Colloquium (IPRC) Proceedings, Bangkok, Thailand, 29 October 2009; pp. 59–80. [ Google Scholar ]
  • Yusuf, M. Investigating relationship between self-efficacy, achievement motivation, and self-regulated learning strategies of undergraduate Students: A study of integrated motivational models. Procedia Soc. Behav. Sci. 2011 , 15 , 2614–2617. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • De la Fuente, J.; Martínez-Vicente, J.M.; Peralta-Sánchez, F.J.; GarzónUmerenkova, A.; Vera, M.M.; Paoloni, P. Applying the SRL vs. ERL theory to the knowledge of achievement emotions in undergraduate university students. Front. Psychol. 2019 , 10 , 2070. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Ahmadi, S. Academic self-esteem, academic self-efficacy and academic achievement: A path analysis. J. Front. Psychol. 2020 , 5 , 155. [ Google Scholar ]
  • Meyen, E.L.; Aust, R.J.; Bui, Y.N. Assessing and monitoring student progress in an E-learning personnel preparation environment. Teach. Educ. Spec. Educ. 2002 , 25 , 187–198. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Dunlosky, J.; Kubat-Silman, A.K.; Christopher, H. Training monitoring skills improves older adults’ self-paced associative learning. Psychol. Aging 2003 , 18 , 340–345. [ Google Scholar ] [ CrossRef ]
  • Zhang, H.J. Research on the relationship between English learning motivation. Self-monitoring and Test Score. Ethnic Educ. Res. 2005 , 6 , 66–71. [ Google Scholar ]
  • Rosenberg, M.J. E-Learning: Strategies for Delivering Knowledge in the Digital Age ; McGraw-Hill: New York, NY, USA, 2001. [ Google Scholar ]
  • Bhat, S.A.; Bashir, M. Measuring ICT orientation: Scale development & validation. Educ. Inf. Technol. 2018 , 23 , 1123–1143. [ Google Scholar ]
  • Achuthan, K.; Francis, S.P.; Diwakar, S. Augmented reflective learning and knowledge retention perceived among students in classrooms involving virtual laboratories. Educ. Inf. Technol. 2017 , 22 , 2825–2855. [ Google Scholar ] [ CrossRef ]
  • Hu, X.; Yelland, N. An investigation of preservice early childhood teachers’ adoption of ICT in a teaching practicum context in Hong Kong. J. Early Child. Teach. Educ. 2017 , 38 , 259–274. [ Google Scholar ] [ CrossRef ]
  • Fraillon, J.; Ainley, J.; Schulz, W.; Friedman, T.; Duckworth, D. Preparing for Life in a Digital World: The IEA International Computer and Information Literacy Study 2018 International Report ; Springer: New York, NY, USA, 2019. [ Google Scholar ]
  • Huber, S.G.; Helm, C. COVID-19 and schooling: Evaluation, assessment and accountability in times of crises—Reacting quickly to explore key issues for policy, practice and research with the school barometer. Educ. Assess. Eval. Account. 2020 , 32 , 237–270. [ Google Scholar ] [ CrossRef ]
  • Eickelmann, B.; Gerick, J. Learning with digital media: Objectives in times of Corona and under special consideration of social Inequities. Dtsch. Schule. 2020 , 16 , 153–162. [ Google Scholar ]
  • Shehzadi, S.; Nisar, Q.A.; Hussain, M.S.; Basheer, M.F.; Hameed, W.U.; Chaudhry, N.I. The role of e-learning toward students’ satisfaction and university brand image at educational institutes of Pakistan: A post-effect of COVID-19. Asian Educ. Dev. Stud. 2020 , 10 , 275–294. [ Google Scholar ] [ CrossRef ]
  • Miller, E.M.; Walton, G.M.; Dweck, C.S.; Job, V.; Trzesniewski, K.; McClure, S. Theories of willpower affect sustained learning. PLoS ONE 2012 , 7 , 38680. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Moriña, A.; Molina, V.M.; Cortés-Vega, M.D. Voices from Spanish students with disabilities: Willpower and effort to survive university. Eur. J. Spec. Needs Educ. 2018 , 33 , 481–494. [ Google Scholar ] [ CrossRef ]
  • Koballa, T.R., Jr.; Crawley, F.E. The influence of attitude on science teaching and learning. Sch. Sci. Math. 1985 , 85 , 222–232. [ Google Scholar ] [ CrossRef ]
  • Chao, C.Y.; Chen, Y.T.; Chuang, K.Y. Exploring students’ learning attitude and achievement in flipped learning supported computer aided design curriculum: A study in high school engineering education. Comput. Appl. Eng. Educ. 2015 , 23 , 514–526. [ Google Scholar ] [ CrossRef ]
  • Stefan, M.; Ciomos, F. The 8th and 9th grades students’ attitude towards teaching and learning physics. Acta Didact. Napocensia. 2010 , 3 , 7–14. [ Google Scholar ]
  • Sedighi, F.; Zarafshan, M.A. Effects of attitude and motivation on the use of language learning strategies by Iranian EFL University students. J. Soc. Sci. Humanit. Shiraz Univ. 2007 , 23 , 71–80. [ Google Scholar ]
  • Megan, S.; Jennifer, H.C.; Stephanie, V.; Kyla, H. The relationship among middle school students’ motivation orientations, learning strategies, and academic achievement. Middle Grades Res. J. 2013 , 8 , 1–12. [ Google Scholar ]
  • Nasser, O.; Majid, V. Motivation, attitude, and language learning. Procedia Soc. Behav. Sci. 2011 , 29 , 994–1000. [ Google Scholar ]
  • Özhan, Ş.Ç.; Kocadere, S.A. The effects of flow, emotional engagement, and motivation on success in a gamified online learning environment. J. Educ. Comput. Res. 2020 , 57 , 2006–2031. [ Google Scholar ] [ CrossRef ]
  • Wang, A.P.; Che, H.S. A research on the relationship between learning anxiety, learning attitude, motivation and test performance. Psychol. Dev. Educ. 2005 , 21 , 55–59. [ Google Scholar ]
  • Lin, C.H.; Zhang, Y.N.; Zheng, B.B. The roles of learning strategies and motivation in online language learning: A structural equation modeling analysis. Comput. Educ. 2017 , 113 , 75–85. [ Google Scholar ] [ CrossRef ]
  • Deschênes, M.F.; Goudreau, J.; Fernandez, N. Learning strategies used by undergraduate nursing students in the context of a digital educational strategy based on script concordance: A descriptive study. Nurse Educ. Today 2020 , 95 , 104607. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Jerusalem, M.; Schwarzer, R. Self-efficacy as a resource factor in stress appraisal processes. In Self-Efficacy: Thought Control of Action ; Schwarzer, R., Ed.; Hemisphere Publishing Corp: Washington, DC, USA, 1992; pp. 195–213. [ Google Scholar ]
  • Zimmerman, B.J. Becoming a self-regulated learner: An overview. Theory Pract. 2002 , 41 , 64–70. [ Google Scholar ] [ CrossRef ]
  • Pintrich, P.R.; Smith, D.A.F.; García, T.; McKeachie, W.J. A Manual for the Use of the Motivated Strategies Questionnaire (MSLQ) ; University of Michigan, National Center for Research to Improve Post Secondary Teaching and Learning: Ann Arbor, MI, USA, 1991. [ Google Scholar ]
  • Knowles, E.; Kerkman, D. An investigation of students attitude and motivation toward online learning. InSight Collect. Fac. Scholarsh. 2007 , 2 , 70–80. [ Google Scholar ] [ CrossRef ]
  • Hair, J.F., Jr.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis: A Global Perspective , 7th ed.; Pearson Education International: Upper Saddle River, NJ, USA, 2010. [ Google Scholar ]
  • Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981 , 18 , 39–50. [ Google Scholar ] [ CrossRef ]
  • Hair, J.F., Jr.; Hult, G.T.M.; Ringle, C.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM) ; Sage: Los Angeles, CA, USA, 2016. [ Google Scholar ]
  • Kiliç-Çakmak, E. Learning strategies and motivational factors predicting information literacy self-efficacy of e-learners. Aust. J. Educ. Technol. 2010 , 26 , 192–208. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Zheng, C.; Liang, J.C.; Li, M.; Tsai, C. The relationship between English language learners’ motivation and online self-regulation: A structural equation modelling approach. System 2018 , 76 , 144–157. [ Google Scholar ] [ CrossRef ]
  • May, M.; George, S.; Prévôt, P. TrAVis to enhance students’ self-monitoring in online learning supported by computer-mediated communication tools. Int. J. Comput. Inform. Syst. Ind. Manag. Appl. 2011 , 3 , 623–634. [ Google Scholar ]
  • Rafart, M.A.; Bikfalvi, A.; Soler, J.; Poch, J. Impact of using automatic E-Learning correctors on teaching business subjects to engineers. Int. J. Eng. Educ. 2019 , 35 , 1630–1641. [ Google Scholar ]
  • Lee, P.M.; Tsui, W.H.; Hsiao, T.C. A low-cost scalable solution for monitoring affective state of students in E-learning environment using mouse and keystroke data. In Intelligent Tutoring Systems ; Cerri, S.A., Clancey, W.J., Papadourakis, G., Panourgia, K., Eds.; Springer: Berlin, Germany, 2012; pp. 679–680. [ Google Scholar ]
  • Metz, D.; Karadgi, S.S.; Müller, U.J.; Grauer, M. Self-Learning monitoring and control of manufacturing processes based on rule induction and event processing. In Proceedings of the 4th International Conference on Information, Process, and Knowledge Management eKNOW, Valencia, Spain, 21–25 November 2012; pp. 78–85. [ Google Scholar ]
  • Fitch, J.L.; Ravlin, E.C. Willpower and perceived behavioral control: Intention-behavior relationship and post behavior attributions. Soc. Behav. Pers. Int. J. 2005 , 33 , 105–124. [ Google Scholar ] [ CrossRef ]
  • Sridharan, B.; Deng, H.; Kirk, J.; Brian, C. Structural equation modeling for evaluating the user perceptions of e-learning effectiveness in higher education. In Proceedings of the ECIS 2010: 18th European Conference on Information Systems, Pretoria, South Africa, 7–9 June 2010. [ Google Scholar ]
  • Tarhini, A.; Hone, K.; Liu, X. The effects of individual differences on e-learning users’ behaviour in developing countries: A structural equation model. Comput. Hum. Behav. 2014 , 41 , 153–163. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • de Leeuw, R.A.; Logger, D.N.; Westerman, M.; Bretschneider, J.; Plomp, M.; Scheele, F. Influencing factors in the implementation of postgraduate medical e-learning: A thematic analysis. BMC Med. Educ. 2019 , 19 , 300. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Erenler, H.H.T. A structural equation model to evaluate students’ learning and satisfaction. Comput. Appl. Eng. Educ. 2020 , 28 , 254–267. [ Google Scholar ] [ CrossRef ]
  • Fee, K. Delivering E-learning: A complete strategy for design, application and assessment. Dev. Learn. Organ. 2013 , 27 , 40–52. [ Google Scholar ] [ CrossRef ]
  • So, W.W.N.; Chen, Y.; Wan, Z.H. Multimedia e-Learning and self-regulated science learning: A study of primary school learners’ experiences and perceptions. J. Sci. Educ. Technol. 2019 , 28 , 508–522. [ Google Scholar ] [ CrossRef ]

Click here to enlarge figure

VariablesCategoryFrequencyPercentage
GenderMale24351.81
Female22648.19
Education program levelUndergraduate program21044.78
Master program15432.84
Doctoral program10522.39
Online learning toolsSmartphone25554.37
Computer/PC12526.65
Tablet8918.98
Online learning mediaGoogle Meet13228.14
Microsoft Teams9921.11
Zoom19641.79
Others428.96
ConstructMeasurement ItemsFactor Loading/Coefficient (t-Value)AVEComposite ReliabilityCronbach’s Alpha
Online Learning Benefit (LBE)LBE10.880.680.860.75
LBE20.86
LBE30.71
Online-learning effectiveness (LEF)LEF10.830.760.900.84
LEF20.88
LEF30.90
Online-learning motivation (LMT)LMT10.860.770.910.85
LMT20.91
LMT30.85
Online-learning strategies (LST)LST10.900.750.900.84
LST20.87
LST30.83
Online-learning attitude (OLA)OLA10.890.750.900.84
OLA20.83
OLA30.87
Online-learning confidence-in-technology (OLC)OLC10.870.690.870.76
OLC20.71
OLC30.89
Online-learning monitoring (OLM)OLM10.880.750.890.83
OLM20.91
OLM30.79
Online-learning self-efficacy (OLS)OLS10.790.640.840.73
OLS20.81
OLS30.89
Online-learning willpower (OLW)OLW10.910.690.870.77
OLW20.84
OLW30.73
LBELEFLMTLSTOLAOLCOLMOLSOLW
LBE
LEF0.82
LMT0.810.80
LST0.800.840.86
OLA0.690.630.780.81
OLC0.760.790.850.790.72
OLM0.810.850.810.760.630.83
OLS0.710.590.690.570.560.690.75
OLW0.750.750.800.740.640.810.800.79
LBELEFLMTLSTOLAOLCOLMOLSOLW
LBE10.880.760.870.660.540.790.780.630.74
LBE20.860.680.740.630.570.750.910.730.79
LBE30.710.540.590.710.630.550.500.360.53
LEF10.630.830.720.650.510.620.690.460.57
LEF20.770.880.780.710.550.730.780.520.69
LEF30.720.900.800.830.570.720.760.580.69
LMT10.880.760.870.660.540.790.780.630.74
LMT20.790.890.910.790.620.730.880.610.67
LMT30.720.650.850.770.890.720.670.590.69
LST10.610.630.680.900.780.640.570.390.57
LST20.740.590.720.870.780.680.610.480.63
LST30.720.900.800.830.570.720.760.580.69
OLA10.720.650.850.790.890.720.670.590.69
OLA20.510.480.550.590.830.580.470.420.43
OLA30.520.440.550.700.870.550.430.390.47
OLC10.780.700.730.650.530.870.770.650.91
OLC20.510.530.570.620.750.710.460.390.47
OLC30.810.730.780.690.550.890.800.660.75
OLM10.790.890.910.790.620.730.880.610.69
OLM20.860.680.740.630.570.750.910.730.79
OLM30.690.550.570.470.390.670.790.610.73
OLS10.410.230.350.280.390.410.400.690.49
OLS20.450.410.480.380.430.480.520.810.49
OLS30.750.660.720.600.490.690.770.890.82
OLW10.780.700.730.650.530.870.770.650.91
OLW20.750.650.710.590.510.690.770.870.84
OLW30.570.490.540.590.570.570.530.390.73
HypothesisPathStandardized Path Coefficientt-ValueResult
H1OLS → LST0.29 ***2.14Accepted
H2OLM → LST0.24 ***2.29Accepted
H3OLC → LST0.28 ***1.99Accepted
H4OLC → LMT0.36 ***2.96Accepted
H5OLW → LMT0.26 ***2.55Accepted
H6OLA → LMT0.34 ***4.68Accepted
H7LMT → LST0.71 ***4.96Accepted
H8LMT → LEF0.60 ***5.89Accepted
H9LST → LEF0.32 ***3.04Accepted
H10LEF → LBE0.81 ***23.6Accepted
MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

Hongsuchon, T.; Emary, I.M.M.E.; Hariguna, T.; Qhal, E.M.A. Assessing the Impact of Online-Learning Effectiveness and Benefits in Knowledge Management, the Antecedent of Online-Learning Strategies and Motivations: An Empirical Study. Sustainability 2022 , 14 , 2570. https://doi.org/10.3390/su14052570

Hongsuchon T, Emary IMME, Hariguna T, Qhal EMA. Assessing the Impact of Online-Learning Effectiveness and Benefits in Knowledge Management, the Antecedent of Online-Learning Strategies and Motivations: An Empirical Study. Sustainability . 2022; 14(5):2570. https://doi.org/10.3390/su14052570

Hongsuchon, Tanaporn, Ibrahiem M. M. El Emary, Taqwa Hariguna, and Eissa Mohammed Ali Qhal. 2022. "Assessing the Impact of Online-Learning Effectiveness and Benefits in Knowledge Management, the Antecedent of Online-Learning Strategies and Motivations: An Empirical Study" Sustainability 14, no. 5: 2570. https://doi.org/10.3390/su14052570

Article Metrics

Article access statistics, further information, mdpi initiatives, follow mdpi.

MDPI

Subscribe to receive issue release notifications and newsletters from MDPI journals

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Published: 25 January 2021

Online education in the post-COVID era

  • Barbara B. Lockee 1  

Nature Electronics volume  4 ,  pages 5–6 ( 2021 ) Cite this article

142k Accesses

241 Citations

334 Altmetric

Metrics details

  • Science, technology and society

The coronavirus pandemic has forced students and educators across all levels of education to rapidly adapt to online learning. The impact of this — and the developments required to make it work — could permanently change how education is delivered.

The COVID-19 pandemic has forced the world to engage in the ubiquitous use of virtual learning. And while online and distance learning has been used before to maintain continuity in education, such as in the aftermath of earthquakes 1 , the scale of the current crisis is unprecedented. Speculation has now also begun about what the lasting effects of this will be and what education may look like in the post-COVID era. For some, an immediate retreat to the traditions of the physical classroom is required. But for others, the forced shift to online education is a moment of change and a time to reimagine how education could be delivered 2 .

advantages of online learning research paper

Looking back

Online education has traditionally been viewed as an alternative pathway, one that is particularly well suited to adult learners seeking higher education opportunities. However, the emergence of the COVID-19 pandemic has required educators and students across all levels of education to adapt quickly to virtual courses. (The term ‘emergency remote teaching’ was coined in the early stages of the pandemic to describe the temporary nature of this transition 3 .) In some cases, instruction shifted online, then returned to the physical classroom, and then shifted back online due to further surges in the rate of infection. In other cases, instruction was offered using a combination of remote delivery and face-to-face: that is, students can attend online or in person (referred to as the HyFlex model 4 ). In either case, instructors just had to figure out how to make it work, considering the affordances and constraints of the specific learning environment to create learning experiences that were feasible and effective.

The use of varied delivery modes does, in fact, have a long history in education. Mechanical (and then later electronic) teaching machines have provided individualized learning programmes since the 1950s and the work of B. F. Skinner 5 , who proposed using technology to walk individual learners through carefully designed sequences of instruction with immediate feedback indicating the accuracy of their response. Skinner’s notions formed the first formalized representations of programmed learning, or ‘designed’ learning experiences. Then, in the 1960s, Fred Keller developed a personalized system of instruction 6 , in which students first read assigned course materials on their own, followed by one-on-one assessment sessions with a tutor, gaining permission to move ahead only after demonstrating mastery of the instructional material. Occasional class meetings were held to discuss concepts, answer questions and provide opportunities for social interaction. A personalized system of instruction was designed on the premise that initial engagement with content could be done independently, then discussed and applied in the social context of a classroom.

These predecessors to contemporary online education leveraged key principles of instructional design — the systematic process of applying psychological principles of human learning to the creation of effective instructional solutions — to consider which methods (and their corresponding learning environments) would effectively engage students to attain the targeted learning outcomes. In other words, they considered what choices about the planning and implementation of the learning experience can lead to student success. Such early educational innovations laid the groundwork for contemporary virtual learning, which itself incorporates a variety of instructional approaches and combinations of delivery modes.

Online learning and the pandemic

Fast forward to 2020, and various further educational innovations have occurred to make the universal adoption of remote learning a possibility. One key challenge is access. Here, extensive problems remain, including the lack of Internet connectivity in some locations, especially rural ones, and the competing needs among family members for the use of home technology. However, creative solutions have emerged to provide students and families with the facilities and resources needed to engage in and successfully complete coursework 7 . For example, school buses have been used to provide mobile hotspots, and class packets have been sent by mail and instructional presentations aired on local public broadcasting stations. The year 2020 has also seen increased availability and adoption of electronic resources and activities that can now be integrated into online learning experiences. Synchronous online conferencing systems, such as Zoom and Google Meet, have allowed experts from anywhere in the world to join online classrooms 8 and have allowed presentations to be recorded for individual learners to watch at a time most convenient for them. Furthermore, the importance of hands-on, experiential learning has led to innovations such as virtual field trips and virtual labs 9 . A capacity to serve learners of all ages has thus now been effectively established, and the next generation of online education can move from an enterprise that largely serves adult learners and higher education to one that increasingly serves younger learners, in primary and secondary education and from ages 5 to 18.

The COVID-19 pandemic is also likely to have a lasting effect on lesson design. The constraints of the pandemic provided an opportunity for educators to consider new strategies to teach targeted concepts. Though rethinking of instructional approaches was forced and hurried, the experience has served as a rare chance to reconsider strategies that best facilitate learning within the affordances and constraints of the online context. In particular, greater variance in teaching and learning activities will continue to question the importance of ‘seat time’ as the standard on which educational credits are based 10 — lengthy Zoom sessions are seldom instructionally necessary and are not aligned with the psychological principles of how humans learn. Interaction is important for learning but forced interactions among students for the sake of interaction is neither motivating nor beneficial.

While the blurring of the lines between traditional and distance education has been noted for several decades 11 , the pandemic has quickly advanced the erasure of these boundaries. Less single mode, more multi-mode (and thus more educator choices) is becoming the norm due to enhanced infrastructure and developed skill sets that allow people to move across different delivery systems 12 . The well-established best practices of hybrid or blended teaching and learning 13 have served as a guide for new combinations of instructional delivery that have developed in response to the shift to virtual learning. The use of multiple delivery modes is likely to remain, and will be a feature employed with learners of all ages 14 , 15 . Future iterations of online education will no longer be bound to the traditions of single teaching modes, as educators can support pedagogical approaches from a menu of instructional delivery options, a mix that has been supported by previous generations of online educators 16 .

Also significant are the changes to how learning outcomes are determined in online settings. Many educators have altered the ways in which student achievement is measured, eliminating assignments and changing assessment strategies altogether 17 . Such alterations include determining learning through strategies that leverage the online delivery mode, such as interactive discussions, student-led teaching and the use of games to increase motivation and attention. Specific changes that are likely to continue include flexible or extended deadlines for assignment completion 18 , more student choice regarding measures of learning, and more authentic experiences that involve the meaningful application of newly learned skills and knowledge 19 , for example, team-based projects that involve multiple creative and social media tools in support of collaborative problem solving.

In response to the COVID-19 pandemic, technological and administrative systems for implementing online learning, and the infrastructure that supports its access and delivery, had to adapt quickly. While access remains a significant issue for many, extensive resources have been allocated and processes developed to connect learners with course activities and materials, to facilitate communication between instructors and students, and to manage the administration of online learning. Paths for greater access and opportunities to online education have now been forged, and there is a clear route for the next generation of adopters of online education.

Before the pandemic, the primary purpose of distance and online education was providing access to instruction for those otherwise unable to participate in a traditional, place-based academic programme. As its purpose has shifted to supporting continuity of instruction, its audience, as well as the wider learning ecosystem, has changed. It will be interesting to see which aspects of emergency remote teaching remain in the next generation of education, when the threat of COVID-19 is no longer a factor. But online education will undoubtedly find new audiences. And the flexibility and learning possibilities that have emerged from necessity are likely to shift the expectations of students and educators, diminishing further the line between classroom-based instruction and virtual learning.

Mackey, J., Gilmore, F., Dabner, N., Breeze, D. & Buckley, P. J. Online Learn. Teach. 8 , 35–48 (2012).

Google Scholar  

Sands, T. & Shushok, F. The COVID-19 higher education shove. Educause Review https://go.nature.com/3o2vHbX (16 October 2020).

Hodges, C., Moore, S., Lockee, B., Trust, T. & Bond, M. A. The difference between emergency remote teaching and online learning. Educause Review https://go.nature.com/38084Lh (27 March 2020).

Beatty, B. J. (ed.) Hybrid-Flexible Course Design Ch. 1.4 https://go.nature.com/3o6Sjb2 (EdTech Books, 2019).

Skinner, B. F. Science 128 , 969–977 (1958).

Article   Google Scholar  

Keller, F. S. J. Appl. Behav. Anal. 1 , 79–89 (1968).

Darling-Hammond, L. et al. Restarting and Reinventing School: Learning in the Time of COVID and Beyond (Learning Policy Institute, 2020).

Fulton, C. Information Learn. Sci . 121 , 579–585 (2020).

Pennisi, E. Science 369 , 239–240 (2020).

Silva, E. & White, T. Change The Magazine Higher Learn. 47 , 68–72 (2015).

McIsaac, M. S. & Gunawardena, C. N. in Handbook of Research for Educational Communications and Technology (ed. Jonassen, D. H.) Ch. 13 (Simon & Schuster Macmillan, 1996).

Irvine, V. The landscape of merging modalities. Educause Review https://go.nature.com/2MjiBc9 (26 October 2020).

Stein, J. & Graham, C. Essentials for Blended Learning Ch. 1 (Routledge, 2020).

Maloy, R. W., Trust, T. & Edwards, S. A. Variety is the spice of remote learning. Medium https://go.nature.com/34Y1NxI (24 August 2020).

Lockee, B. J. Appl. Instructional Des . https://go.nature.com/3b0ddoC (2020).

Dunlap, J. & Lowenthal, P. Open Praxis 10 , 79–89 (2018).

Johnson, N., Veletsianos, G. & Seaman, J. Online Learn. 24 , 6–21 (2020).

Vaughan, N. D., Cleveland-Innes, M. & Garrison, D. R. Assessment in Teaching in Blended Learning Environments: Creating and Sustaining Communities of Inquiry (Athabasca Univ. Press, 2013).

Conrad, D. & Openo, J. Assessment Strategies for Online Learning: Engagement and Authenticity (Athabasca Univ. Press, 2018).

Download references

Author information

Authors and affiliations.

School of Education, Virginia Tech, Blacksburg, VA, USA

Barbara B. Lockee

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Barbara B. Lockee .

Ethics declarations

Competing interests.

The author declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article.

Lockee, B.B. Online education in the post-COVID era. Nat Electron 4 , 5–6 (2021). https://doi.org/10.1038/s41928-020-00534-0

Download citation

Published : 25 January 2021

Issue Date : January 2021

DOI : https://doi.org/10.1038/s41928-020-00534-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

A comparative study on the effectiveness of online and in-class team-based learning on student performance and perceptions in virtual simulation experiments.

BMC Medical Education (2024)

Enhancing learner affective engagement: The impact of instructor emotional expressions and vocal charisma in asynchronous video-based online learning

  • Hung-Yue Suen
  • Kuo-En Hung

Education and Information Technologies (2024)

Development and validation of the antecedents to videoconference fatigue scale in higher education (AVFS-HE)

  • Benjamin J. Li
  • Andrew Z. H. Yee

Leveraging privacy profiles to empower users in the digital society

  • Davide Di Ruscio
  • Paola Inverardi
  • Phuong T. Nguyen

Automated Software Engineering (2024)

Global public concern of childhood and adolescence suicide: a new perspective and new strategies for suicide prevention in the post-pandemic era

  • Dong Keon Yon

World Journal of Pediatrics (2024)

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

advantages of online learning research paper

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

The PMC website is updating on October 15, 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Elsevier - PMC COVID-19 Collection

Logo of pheelsevier

A systematic review of research on online teaching and learning from 2009 to 2018

Associated data.

Systematic reviews were conducted in the nineties and early 2000's on online learning research. However, there is no review examining the broader aspect of research themes in online learning in the last decade. This systematic review addresses this gap by examining 619 research articles on online learning published in twelve journals in the last decade. These studies were examined for publication trends and patterns, research themes, research methods, and research settings and compared with the research themes from the previous decades. While there has been a slight decrease in the number of studies on online learning in 2015 and 2016, it has then continued to increase in 2017 and 2018. The majority of the studies were quantitative in nature and were examined in higher education. Online learning research was categorized into twelve themes and a framework across learner, course and instructor, and organizational levels was developed. Online learner characteristics and online engagement were examined in a high number of studies and were consistent with three of the prior systematic reviews. However, there is still a need for more research on organization level topics such as leadership, policy, and management and access, culture, equity, inclusion, and ethics and also on online instructor characteristics.

  • • Twelve online learning research themes were identified in 2009–2018.
  • • A framework with learner, course and instructor, and organizational levels was used.
  • • Online learner characteristics and engagement were the mostly examined themes.
  • • The majority of the studies used quantitative research methods and in higher education.
  • • There is a need for more research on organization level topics.

1. Introduction

Online learning has been on the increase in the last two decades. In the United States, though higher education enrollment has declined, online learning enrollment in public institutions has continued to increase ( Allen & Seaman, 2017 ), and so has the research on online learning. There have been review studies conducted on specific areas on online learning such as innovations in online learning strategies ( Davis et al., 2018 ), empirical MOOC literature ( Liyanagunawardena et al., 2013 ; Veletsianos & Shepherdson, 2016 ; Zhu et al., 2018 ), quality in online education ( Esfijani, 2018 ), accessibility in online higher education ( Lee, 2017 ), synchronous online learning ( Martin et al., 2017 ), K-12 preparation for online teaching ( Moore-Adams et al., 2016 ), polychronicity in online learning ( Capdeferro et al., 2014 ), meaningful learning research in elearning and online learning environments ( Tsai, Shen, & Chiang, 2013 ), problem-based learning in elearning and online learning environments ( Tsai & Chiang, 2013 ), asynchronous online discussions ( Thomas, 2013 ), self-regulated learning in online learning environments ( Tsai, Shen, & Fan, 2013 ), game-based learning in online learning environments ( Tsai & Fan, 2013 ), and online course dropout ( Lee & Choi, 2011 ). While there have been review studies conducted on specific online learning topics, very few studies have been conducted on the broader aspect of online learning examining research themes.

2. Systematic Reviews of Distance Education and Online Learning Research

Distance education has evolved from offline to online settings with the access to internet and COVID-19 has made online learning the common delivery method across the world. Tallent-Runnels et al. (2006) reviewed research late 1990's to early 2000's, Berge and Mrozowski (2001) reviewed research 1990 to 1999, and Zawacki-Richter et al. (2009) reviewed research in 2000–2008 on distance education and online learning. Table 1 shows the research themes from previous systematic reviews on online learning research. There are some themes that re-occur in the various reviews, and there are also new themes that emerge. Though there have been reviews conducted in the nineties and early 2000's, there is no review examining the broader aspect of research themes in online learning in the last decade. Hence, the need for this systematic review which informs the research themes in online learning from 2009 to 2018. In the following sections, we review these systematic review studies in detail.

Comparison of online learning research themes from previous studies.

1990–1999 ( )1993–2004 ( )2000–2008 (Zawacki-Richter et al.,
2009)
Most Number of Studies
Lowest Number of Studies

2.1. Distance education research themes, 1990 to 1999 ( Berge & Mrozowski, 2001 )

Berge and Mrozowski (2001) reviewed 890 research articles and dissertation abstracts on distance education from 1990 to 1999. The four distance education journals chosen by the authors to represent distance education included, American Journal of Distance Education, Distance Education, Open Learning, and the Journal of Distance Education. This review overlapped in the dates of the Tallent-Runnels et al. (2006) study. Berge and Mrozowski (2001) categorized the articles according to Sherry's (1996) ten themes of research issues in distance education: redefining roles of instructor and students, technologies used, issues of design, strategies to stimulate learning, learner characteristics and support, issues related to operating and policies and administration, access and equity, and costs and benefits.

In the Berge and Mrozowski (2001) study, more than 100 studies focused on each of the three themes: (1) design issues, (2) learner characteristics, and (3) strategies to increase interactivity and active learning. By design issues, the authors focused on instructional systems design and focused on topics such as content requirement, technical constraints, interactivity, and feedback. The next theme, strategies to increase interactivity and active learning, were closely related to design issues and focused on students’ modes of learning. Learner characteristics focused on accommodating various learning styles through customized instructional theory. Less than 50 studies focused on the three least examined themes: (1) cost-benefit tradeoffs, (2) equity and accessibility, and (3) learner support. Cost-benefit trade-offs focused on the implementation costs of distance education based on school characteristics. Equity and accessibility focused on the equity of access to distance education systems. Learner support included topics such as teacher to teacher support as well as teacher to student support.

2.2. Online learning research themes, 1993 to 2004 ( Tallent-Runnels et al., 2006 )

Tallent-Runnels et al. (2006) reviewed research on online instruction from 1993 to 2004. They reviewed 76 articles focused on online learning by searching five databases, ERIC, PsycINFO, ContentFirst, Education Abstracts, and WilsonSelect. Tallent-Runnels et al. (2006) categorized research into four themes, (1) course environment, (2) learners' outcomes, (3) learners’ characteristics, and (4) institutional and administrative factors. The first theme that the authors describe as course environment ( n  = 41, 53.9%) is an overarching theme that includes classroom culture, structural assistance, success factors, online interaction, and evaluation.

Tallent-Runnels et al. (2006) for their second theme found that studies focused on questions involving the process of teaching and learning and methods to explore cognitive and affective learner outcomes ( n  = 29, 38.2%). The authors stated that they found the research designs flawed and lacked rigor. However, the literature comparing traditional and online classrooms found both delivery systems to be adequate. Another research theme focused on learners’ characteristics ( n  = 12, 15.8%) and the synergy of learners, design of the online course, and system of delivery. Research findings revealed that online learners were mainly non-traditional, Caucasian, had different learning styles, and were highly motivated to learn. The final theme that they reported was institutional and administrative factors (n  = 13, 17.1%) on online learning. Their findings revealed that there was a lack of scholarly research in this area and most institutions did not have formal policies in place for course development as well as faculty and student support in training and evaluation. Their research confirmed that when universities offered online courses, it improved student enrollment numbers.

2.3. Distance education research themes 2000 to 2008 ( Zawacki-Richter et al., 2009 )

Zawacki-Richter et al. (2009) reviewed 695 articles on distance education from 2000 to 2008 using the Delphi method for consensus in identifying areas and classified the literature from five prominent journals. The five journals selected due to their wide scope in research in distance education included Open Learning, Distance Education, American Journal of Distance Education, the Journal of Distance Education, and the International Review of Research in Open and Distributed Learning. The reviewers examined the main focus of research and identified gaps in distance education research in this review.

Zawacki-Richter et al. (2009) classified the studies into macro, meso and micro levels focusing on 15 areas of research. The five areas of the macro-level addressed: (1) access, equity and ethics to deliver distance education for developing nations and the role of various technologies to narrow the digital divide, (2) teaching and learning drivers, markets, and professional development in the global context, (3) distance delivery systems and institutional partnerships and programs and impact of hybrid modes of delivery, (4) theoretical frameworks and models for instruction, knowledge building, and learner interactions in distance education practice, and (5) the types of preferred research methodologies. The meso-level focused on seven areas that involve: (1) management and organization for sustaining distance education programs, (2) examining financial aspects of developing and implementing online programs, (3) the challenges and benefits of new technologies for teaching and learning, (4) incentives to innovate, (5) professional development and support for faculty, (6) learner support services, and (7) issues involving quality standards and the impact on student enrollment and retention. The micro-level focused on three areas: (1) instructional design and pedagogical approaches, (2) culturally appropriate materials, interaction, communication, and collaboration among a community of learners, and (3) focus on characteristics of adult learners, socio-economic backgrounds, learning preferences, and dispositions.

The top three research themes in this review by Zawacki-Richter et al. (2009) were interaction and communities of learning ( n  = 122, 17.6%), instructional design ( n  = 121, 17.4%) and learner characteristics ( n  = 113, 16.3%). The lowest number of studies (less than 3%) were found in studies examining the following research themes, management and organization ( n  = 18), research methods in DE and knowledge transfer ( n  = 13), globalization of education and cross-cultural aspects ( n  = 13), innovation and change ( n  = 13), and costs and benefits ( n  = 12).

2.4. Online learning research themes

These three systematic reviews provide a broad understanding of distance education and online learning research themes from 1990 to 2008. However, there is an increase in the number of research studies on online learning in this decade and there is a need to identify recent research themes examined. Based on the previous systematic reviews ( Berge & Mrozowski, 2001 ; Hung, 2012 ; Tallent-Runnels et al., 2006 ; Zawacki-Richter et al., 2009 ), online learning research in this study is grouped into twelve different research themes which include Learner characteristics, Instructor characteristics, Course or program design and development, Course Facilitation, Engagement, Course Assessment, Course Technologies, Access, Culture, Equity, Inclusion, and Ethics, Leadership, Policy and Management, Instructor and Learner Support, and Learner Outcomes. Table 2 below describes each of the research themes and using these themes, a framework is derived in Fig. 1 .

Research themes in online learning.

Research ThemeDescription
1Learner CharacteristicsFocuses on understanding the learner characteristics and how online learning can be designed and delivered to meet their needs. Online learner characteristics can be broadly categorized into demographic characteristics, academic characteristics, cognitive characteristics, affective, self-regulation, and motivational characteristics.
2Learner OutcomesLearner outcomes are statements that specify what the learner will achieve at the end of the course or program. Examining learner outcomes such as success, retention, and dropouts are critical in online courses.
3EngagementEngaging the learner in the online course is vitally important as they are separated from the instructor and peers in the online setting. Engagement is examined through the lens of interaction, participation, community, collaboration, communication, involvement and presence.
4Course or Program Design and DevelopmentCourse design and development is critical in online learning as it engages and assists the students in achieving the learner outcomes. Several models and processes are used to develop the online course, employing different design elements to meet student needs.
5Course FacilitationThe delivery or facilitation of the course is as important as course design. Facilitation strategies used in delivery of the course such as in communication and modeling practices are examined in course facilitation.
6Course AssessmentCourse Assessments are adapted and delivered in an online setting. Formative assessments, peer assessments, differentiated assessments, learner choice in assessments, feedback system, online proctoring, plagiarism in online learning, and alternate assessments such as eportfolios are examined.
7Evaluation and Quality AssuranceEvaluation is making a judgment either on the process, the product or a program either during or at the end. There is a need for research on evaluation and quality in the online courses. This has been examined through course evaluations, surveys, analytics, social networks, and pedagogical assessments. Quality assessment rubrics such as Quality Matters have also been researched.
8Course TechnologiesA number of online course technologies such as learning management systems, online textbooks, online audio and video tools, collaborative tools, social networks to build online community have been the focus of research.
9Instructor CharacteristicsWith the increase in online courses, there has also been an increase in the number of instructors teaching online courses. Instructor characteristics can be examined through their experience, satisfaction, and roles in online teaching.
10Institutional SupportThe support for online learning is examined both as learner support and instructor support. Online students need support to be successful online learners and this could include social, academic, and cognitive forms of support. Online instructors need support in terms of pedagogy and technology to be successful online instructors.
11Access, Culture, Equity, Inclusion, and EthicsCross-cultural online learning is gaining importance along with access in global settings. In addition, providing inclusive opportunities for all learners and in ethical ways is being examined.
12Leadership, Policy and ManagementLeadership support is essential for success of online learning. Leaders perspectives, challenges and strategies used are examined. Policies and governance related research are also being studied.

Fig. 1

Online learning research themes framework.

The collection of research themes is presented as a framework in Fig. 1 . The themes are organized by domain or level to underscore the nested relationship that exists. As evidenced by the assortment of themes, research can focus on any domain of delivery or associated context. The “Learner” domain captures characteristics and outcomes related to learners and their interaction within the courses. The “Course and Instructor” domain captures elements about the broader design of the course and facilitation by the instructor, and the “Organizational” domain acknowledges the contextual influences on the course. It is important to note as well that due to the nesting, research themes can cross domains. For example, the broader cultural context may be studied as it pertains to course design and development, and institutional support can include both learner support and instructor support. Likewise, engagement research can involve instructors as well as learners.

In this introduction section, we have reviewed three systematic reviews on online learning research ( Berge & Mrozowski, 2001 ; Tallent-Runnels et al., 2006 ; Zawacki-Richter et al., 2009 ). Based on these reviews and other research, we have derived twelve themes to develop an online learning research framework which is nested in three levels: learner, course and instructor, and organization.

2.5. Purpose of this research

In two out of the three previous reviews, design, learner characteristics and interaction were examined in the highest number of studies. On the other hand, cost-benefit tradeoffs, equity and accessibility, institutional and administrative factors, and globalization and cross-cultural aspects were examined in the least number of studies. One explanation for this may be that it is a function of nesting, noting that studies falling in the Organizational and Course levels may encompass several courses or many more participants within courses. However, while some research themes re-occur, there are also variations in some themes across time, suggesting the importance of research themes rise and fall over time. Thus, a critical examination of the trends in themes is helpful for understanding where research is needed most. Also, since there is no recent study examining online learning research themes in the last decade, this study strives to address that gap by focusing on recent research themes found in the literature, and also reviewing research methods and settings. Notably, one goal is to also compare findings from this decade to the previous review studies. Overall, the purpose of this study is to examine publication trends in online learning research taking place during the last ten years and compare it with the previous themes identified in other review studies. Due to the continued growth of online learning research into new contexts and among new researchers, we also examine the research methods and settings found in the studies of this review.

The following research questions are addressed in this study.

  • 1. What percentage of the population of articles published in the journals reviewed from 2009 to 2018 were related to online learning and empirical?
  • 2. What is the frequency of online learning research themes in the empirical online learning articles of journals reviewed from 2009 to 2018?
  • 3. What is the frequency of research methods and settings that researchers employed in the empirical online learning articles of the journals reviewed from 2009 to 2018?

This five-step systematic review process described in the U.S. Department of Education, Institute of Education Sciences, What Works Clearinghouse Procedures and Standards Handbook, Version 4.0 ( 2017 ) was used in this systematic review: (a) developing the review protocol, (b) identifying relevant literature, (c) screening studies, (d) reviewing articles, and (e) reporting findings.

3.1. Data sources and search strategies

The Education Research Complete database was searched using the keywords below for published articles between the years 2009 and 2018 using both the Title and Keyword function for the following search terms.

“online learning" OR "online teaching" OR "online program" OR "online course" OR “online education”

3.2. Inclusion/exclusion criteria

The initial search of online learning research among journals in the database resulted in more than 3000 possible articles. Therefore, we limited our search to select journals that focus on publishing peer-reviewed online learning and educational research. Our aim was to capture the journals that published the most articles in online learning. However, we also wanted to incorporate the concept of rigor, so we used expert perception to identify 12 peer-reviewed journals that publish high-quality online learning research. Dissertations and conference proceedings were excluded. To be included in this systematic review, each study had to meet the screening criteria as described in Table 3 . A research study was excluded if it did not meet all of the criteria to be included.

Inclusion/Exclusion criteria.

CriteriaInclusionExclusion
Focus of the articleOnline learningArticles that did not focus on online learning
Journals PublishedTwelve identified journalsJournals outside of the 12 journals
Publication date2009 to 2018Prior to 2009 and after 2018
Publication typeScholarly articles of original research from peer reviewed journalsBook chapters, technical reports, dissertations, or proceedings
Research Method and ResultsThere was an identifiable method and results section describing how the study was conducted and included the findings. Quantitative and qualitative methods were included.Reviews of other articles, opinion, or discussion papers that do not include a discussion of the procedures of the study or analysis of data such as product reviews or conceptual articles.
LanguageJournal article was written in EnglishOther languages were not included

3.3. Process flow selection of articles

Fig. 2 shows the process flow involved in the selection of articles. The search in the database Education Research Complete yielded an initial sample of 3332 articles. Targeting the 12 journals removed 2579 articles. After reviewing the abstracts, we removed 134 articles based on the inclusion/exclusion criteria. The final sample, consisting of 619 articles, was entered into the computer software MAXQDA ( VERBI Software, 2019 ) for coding.

Fig. 2

Flowchart of online learning research selection.

3.4. Developing review protocol

A review protocol was designed as a codebook in MAXQDA ( VERBI Software, 2019 ) by the three researchers. The codebook was developed based on findings from the previous review studies and from the initial screening of the articles in this review. The codebook included 12 research themes listed earlier in Table 2 (Learner characteristics, Instructor characteristics, Course or program design and development, Course Facilitation, Engagement, Course Assessment, Course Technologies, Access, Culture, Equity, Inclusion, and Ethics, Leadership, Policy and Management, Instructor and Learner Support, and Learner Outcomes), four research settings (higher education, continuing education, K-12, corporate/military), and three research designs (quantitative, qualitative and mixed methods). Fig. 3 below is a screenshot of MAXQDA used for the coding process.

Fig. 3

Codebook from MAXQDA.

3.5. Data coding

Research articles were coded by two researchers in MAXQDA. Two researchers independently coded 10% of the articles and then discussed and updated the coding framework. The second author who was a doctoral student coded the remaining studies. The researchers met bi-weekly to address coding questions that emerged. After the first phase of coding, we found that more than 100 studies fell into each of the categories of Learner Characteristics or Engagement, so we decided to pursue a second phase of coding and reexamine the two themes. Learner Characteristics were classified into the subthemes of Academic, Affective, Motivational, Self-regulation, Cognitive, and Demographic Characteristics. Engagement was classified into the subthemes of Collaborating, Communication, Community, Involvement, Interaction, Participation, and Presence.

3.6. Data analysis

Frequency tables were generated for each of the variables so that outliers could be examined and narrative data could be collapsed into categories. Once cleaned and collapsed into a reasonable number of categories, descriptive statistics were used to describe each of the coded elements. We first present the frequencies of publications related to online learning in the 12 journals. The total number of articles for each journal (collectively, the population) was hand-counted from journal websites, excluding editorials and book reviews. The publication trend of online learning research was also depicted from 2009 to 2018. Then, the descriptive information of the 12 themes, including the subthemes of Learner Characteristics and Engagement were provided. Finally, research themes by research settings and methodology were elaborated.

4.1. Publication trends on online learning

Publication patterns of the 619 articles reviewed from the 12 journals are presented in Table 4 . International Review of Research in Open and Distributed Learning had the highest number of publications in this review. Overall, about 8% of the articles appearing in these twelve journals consisted of online learning publications; however, several journals had concentrations of online learning articles totaling more than 20%.

Empirical online learning research articles by journal, 2009–2018.

Journal NameFrequency of Empirical Online Learning ResearchPercent of SamplePercent of Journal's Total Articles
International Review of Research in Open and Distributed Learning15224.4022.55
Internet & Higher Education8413.4826.58
Computers & Education7512.0418.84
Online Learning7211.563.25
Distance Education6410.2725.10
Journal of Online Learning & Teaching396.2611.71
Journal of Educational Technology & Society365.783.63
Quarterly Review of Distance Education243.854.71
American Journal of Distance Education213.379.17
British Journal of Educational Technology193.051.93
Educational Technology Research & Development193.0510.80
Australasian Journal of Educational Technology142.252.31
Total619100.08.06

Note . Journal's Total Article count excludes reviews and editorials.

The publication trend of online learning research is depicted in Fig. 4 . When disaggregated by year, the total frequency of publications shows an increasing trend. Online learning articles increased throughout the decade and hit a relative maximum in 2014. The greatest number of online learning articles ( n  = 86) occurred most recently, in 2018.

Fig. 4

Online learning publication trends by year.

4.2. Online learning research themes that appeared in the selected articles

The publications were categorized into the twelve research themes identified in Fig. 1 . The frequency counts and percentages of the research themes are provided in Table 5 below. A majority of the research is categorized into the Learner domain. The fewest number of articles appears in the Organization domain.

Research themes in the online learning publications from 2009 to 2018.

Research ThemesFrequencyPercentage
Engagement17928.92
Learner Characteristics13421.65
Learner Outcome325.17
Evaluation and Quality Assurance386.14
Course Technologies355.65
Course Facilitation345.49
Course Assessment304.85
Course Design and Development274.36
Instructor Characteristics213.39
Institutional Support335.33
Access, Culture, Equity, Inclusion, and Ethics294.68
Leadership, Policy, and Management274.36

The specific themes of Engagement ( n  = 179, 28.92%) and Learner Characteristics ( n  = 134, 21.65%) were most often examined in publications. These two themes were further coded to identify sub-themes, which are described in the next two sections. Publications focusing on Instructor Characteristics ( n  = 21, 3.39%) were least common in the dataset.

4.2.1. Research on engagement

The largest number of studies was on engagement in online learning, which in the online learning literature is referred to and examined through different terms. Hence, we explore this category in more detail. In this review, we categorized the articles into seven different sub-themes as examined through different lenses including presence, interaction, community, participation, collaboration, involvement, and communication. We use the term “involvement” as one of the terms since researchers sometimes broadly used the term engagement to describe their work without further description. Table 6 below provides the description, frequency, and percentages of the various studies related to engagement.

Research sub-themes on engagement.

DescriptionFrequencyPercentage
PresenceLearning experience through social, cognitive, and teaching presence.508.08
InteractionProcess of interacting with peers, instructor, or content that results in learners understanding or behavior436.95
CommunitySense of belonging within a group254.04
ParticipationProcess of being actively involved213.39
CollaborationWorking with someone to create something172.75
InvolvementInvolvement in learning. This includes articles that focused broadly on engagement of learners.142.26
CommunicationProcess of exchanging information with the intent to share information91.45

In the sections below, we provide several examples of the different engagement sub-themes that were studied within the larger engagement theme.

Presence. This sub-theme was the most researched in engagement. With the development of the community of inquiry framework most of the studies in this subtheme examined social presence ( Akcaoglu & Lee, 2016 ; Phirangee & Malec, 2017 ; Wei et al., 2012 ), teaching presence ( Orcutt & Dringus, 2017 ; Preisman, 2014 ; Wisneski et al., 2015 ) and cognitive presence ( Archibald, 2010 ; Olesova et al., 2016 ).

Interaction . This was the second most studied theme under engagement. Researchers examined increasing interpersonal interactions ( Cung et al., 2018 ), learner-learner interactions ( Phirangee, 2016 ; Shackelford & Maxwell, 2012 ; Tawfik et al., 2018 ), peer-peer interaction ( Comer et al., 2014 ), learner-instructor interaction ( Kuo et al., 2014 ), learner-content interaction ( Zimmerman, 2012 ), interaction through peer mentoring ( Ruane & Koku, 2014 ), interaction and community building ( Thormann & Fidalgo, 2014 ), and interaction in discussions ( Ruane & Lee, 2016 ; Tibi, 2018 ).

Community. Researchers examined building community in online courses ( Berry, 2017 ), supporting a sense of community ( Jiang, 2017 ), building an online learning community of practice ( Cho, 2016 ), building an academic community ( Glazer & Wanstreet, 2011 ; Nye, 2015 ; Overbaugh & Nickel, 2011 ), and examining connectedness and rapport in an online community ( Bolliger & Inan, 2012 ; Murphy & Rodríguez-Manzanares, 2012 ; Slagter van Tryon & Bishop, 2012 ).

Participation. Researchers examined engagement through participation in a number of studies. Some of the topics include, participation patterns in online discussion ( Marbouti & Wise, 2016 ; Wise et al., 2012 ), participation in MOOCs ( Ahn et al., 2013 ; Saadatmand & Kumpulainen, 2014 ), features that influence students’ online participation ( Rye & Støkken, 2012 ) and active participation.

Collaboration. Researchers examined engagement through collaborative learning. Specific studies focused on cross-cultural collaboration ( Kumi-Yeboah, 2018 ; Yang et al., 2014 ), how virtual teams collaborate ( Verstegen et al., 2018 ), types of collaboration teams ( Wicks et al., 2015 ), tools for collaboration ( Boling et al., 2014 ), and support for collaboration ( Kopp et al., 2012 ).

Involvement. Researchers examined engaging learners through involvement in various learning activities ( Cundell & Sheepy, 2018 ), student engagement through various measures ( Dixson, 2015 ), how instructors included engagement to involve students in learning ( O'Shea et al., 2015 ), different strategies to engage the learner ( Amador & Mederer, 2013 ), and designed emotionally engaging online environments ( Koseoglu & Doering, 2011 ).

Communication. Researchers examined communication in online learning in studies using social network analysis ( Ergün & Usluel, 2016 ), using informal communication tools such as Facebook for class discussion ( Kent, 2013 ), and using various modes of communication ( Cunningham et al., 2010 ; Rowe, 2016 ). Studies have also focused on both asynchronous and synchronous aspects of communication ( Swaggerty & Broemmel, 2017 ; Yamagata-Lynch, 2014 ).

4.2.2. Research on learner characteristics

The second largest theme was learner characteristics. In this review, we explore this further to identify several aspects of learner characteristics. In this review, we categorized the learner characteristics into self-regulation characteristics, motivational characteristics, academic characteristics, affective characteristics, cognitive characteristics, and demographic characteristics. Table 7 provides the number of studies and percentages examining the various learner characteristics.

Research sub-themes on learner characteristics.

Learner CharacteristicsDescriptionFrequencyPercentage
Self-regulation CharacteristicsInvolves controlling learner's behavior, emotions, and thoughts to achieve specific learning and performance goals548.72
Motivational CharacteristicsLearners goal-directed activity instigated and sustained such as beliefs, and behavioral change233.72
Academic CharacteristicsEducation characteristics such as educational type and educational level193.07
Affective CharacteristicsLearner characteristics that describe learners' feelings or emotions such as satisfaction172.75
Cognitive CharacteristicsLearner characteristics related to cognitive elements such as attention, memory, and intellect (e.g., learning strategies, learning skills, etc.)142.26
Demographic CharacteristicsLearner characteristics that relate to information as age, gender, language, social economic status, and cultural background.71.13

Online learning has elements that are different from the traditional face-to-face classroom and so the characteristics of the online learners are also different. Yukselturk and Top (2013) categorized online learner profile into ten aspects: gender, age, work status, self-efficacy, online readiness, self-regulation, participation in discussion list, participation in chat sessions, satisfaction, and achievement. Their categorization shows that there are differences in online learner characteristics in these aspects when compared to learners in other settings. Some of the other aspects such as participation and achievement as discussed by Yukselturk and Top (2013) are discussed in different research themes in this study. The sections below provide examples of the learner characteristics sub-themes that were studied.

Self-regulation. Several researchers have examined self-regulation in online learning. They found that successful online learners are academically motivated ( Artino & Stephens, 2009 ), have academic self-efficacy ( Cho & Shen, 2013 ), have grit and intention to succeed ( Wang & Baker, 2018 ), have time management and elaboration strategies ( Broadbent, 2017 ), set goals and revisit course content ( Kizilcec et al., 2017 ), and persist ( Glazer & Murphy, 2015 ). Researchers found a positive relationship between learner's self-regulation and interaction ( Delen et al., 2014 ) and self-regulation and communication and collaboration ( Barnard et al., 2009 ).

Motivation. Researchers focused on motivation of online learners including different motivation levels of online learners ( Li & Tsai, 2017 ), what motivated online learners ( Chaiprasurt & Esichaikul, 2013 ), differences in motivation of online learners ( Hartnett et al., 2011 ), and motivation when compared to face to face learners ( Paechter & Maier, 2010 ). Harnett et al. (2011) found that online learner motivation was complex, multifaceted, and sensitive to situational conditions.

Academic. Several researchers have focused on academic aspects for online learner characteristics. Readiness for online learning has been examined as an academic factor by several researchers ( Buzdar et al., 2016 ; Dray et al., 2011 ; Wladis & Samuels, 2016 ; Yu, 2018 ) specifically focusing on creating and validating measures to examine online learner readiness including examining students emotional intelligence as a measure of student readiness for online learning. Researchers have also examined other academic factors such as academic standing ( Bradford & Wyatt, 2010 ), course level factors ( Wladis et al., 2014 ) and academic skills in online courses ( Shea & Bidjerano, 2014 ).

Affective. Anderson and Bourke (2013) describe affective characteristics through which learners express feelings or emotions. Several research studies focused on the affective characteristics of online learners. Learner satisfaction for online learning has been examined by several researchers ( Cole et al., 2014 ; Dziuban et al., 2015 ; Kuo et al., 2013 ; Lee, 2014a ) along with examining student emotions towards online assessment ( Kim et al., 2014 ).

Cognitive. Researchers have also examined cognitive aspects of learner characteristics including meta-cognitive skills, cognitive variables, higher-order thinking, cognitive density, and critical thinking ( Chen & Wu, 2012 ; Lee, 2014b ). Lee (2014b) examined the relationship between cognitive presence density and higher-order thinking skills. Chen and Wu (2012) examined the relationship between cognitive and motivational variables in an online system for secondary physical education.

Demographic. Researchers have examined various demographic factors in online learning. Several researchers have examined gender differences in online learning ( Bayeck et al., 2018 ; Lowes et al., 2016 ; Yukselturk & Bulut, 2009 ), ethnicity, age ( Ke & Kwak, 2013 ), and minority status ( Yeboah & Smith, 2016 ) of online learners.

4.2.3. Less frequently studied research themes

While engagement and learner characteristics were studied the most, other themes were less often studied in the literature and are presented here, according to size, with general descriptions of the types of research examined for each.

Evaluation and Quality Assurance. There were 38 studies (6.14%) published in the theme of evaluation and quality assurance. Some of the studies in this theme focused on course quality standards, using quality matters to evaluate quality, using the CIPP model for evaluation, online learning system evaluation, and course and program evaluations.

Course Technologies. There were 35 studies (5.65%) published in the course technologies theme. Some of the studies examined specific technologies such as Edmodo, YouTube, Web 2.0 tools, wikis, Twitter, WebCT, Screencasts, and Web conferencing systems in the online learning context.

Course Facilitation. There were 34 studies (5.49%) published in the course facilitation theme. Some of the studies in this theme examined facilitation strategies and methods, experiences of online facilitators, and online teaching methods.

Institutional Support. There were 33 studies (5.33%) published in the institutional support theme which included support for both the instructor and learner. Some of the studies on instructor support focused on training new online instructors, mentoring programs for faculty, professional development resources for faculty, online adjunct faculty training, and institutional support for online instructors. Studies on learner support focused on learning resources for online students, cognitive and social support for online learners, and help systems for online learner support.

Learner Outcome. There were 32 studies (5.17%) published in the learner outcome theme. Some of the studies that were examined in this theme focused on online learner enrollment, completion, learner dropout, retention, and learner success.

Course Assessment. There were 30 studies (4.85%) published in the course assessment theme. Some of the studies in the course assessment theme examined online exams, peer assessment and peer feedback, proctoring in online exams, and alternative assessments such as eportfolio.

Access, Culture, Equity, Inclusion, and Ethics. There were 29 studies (4.68%) published in the access, culture, equity, inclusion, and ethics theme. Some of the studies in this theme examined online learning across cultures, multi-cultural effectiveness, multi-access, and cultural diversity in online learning.

Leadership, Policy, and Management. There were 27 studies (4.36%) published in the leadership, policy, and management theme. Some of the studies on leadership, policy, and management focused on online learning leaders, stakeholders, strategies for online learning leadership, resource requirements, university policies for online course policies, governance, course ownership, and faculty incentives for online teaching.

Course Design and Development. There were 27 studies (4.36%) published in the course design and development theme. Some of the studies examined in this theme focused on design elements, design issues, design process, design competencies, design considerations, and instructional design in online courses.

Instructor Characteristics. There were 21 studies (3.39%) published in the instructor characteristics theme. Some of the studies in this theme were on motivation and experiences of online instructors, ability to perform online teaching duties, roles of online instructors, and adjunct versus full-time online instructors.

4.3. Research settings and methodology used in the studies

The research methods used in the studies were classified into quantitative, qualitative, and mixed methods ( Harwell, 2012 , pp. 147–163). The research setting was categorized into higher education, continuing education, K-12, and corporate/military. As shown in Table A in the appendix, the vast majority of the publications used higher education as the research setting ( n  = 509, 67.6%). Table B in the appendix shows that approximately half of the studies adopted the quantitative method ( n  = 324, 43.03%), followed by the qualitative method ( n  = 200, 26.56%). Mixed methods account for the smallest portion ( n  = 95, 12.62%).

Table A shows that the patterns of the four research settings were approximately consistent across the 12 themes except for the theme of Leaner Outcome and Institutional Support. Continuing education had a higher relative frequency in Learner Outcome (0.28) and K-12 had a higher relative frequency in Institutional Support (0.33) compared to the frequencies they had in the total themes (0.09 and 0.08 respectively). Table B in the appendix shows that the distribution of the three methods were not consistent across the 12 themes. While quantitative studies and qualitative studies were roughly evenly distributed in Engagement, they had a large discrepancy in Learner Characteristics. There were 100 quantitative studies; however, only 18 qualitative studies published in the theme of Learner Characteristics.

In summary, around 8% of the articles published in the 12 journals focus on online learning. Online learning publications showed a tendency of increase on the whole in the past decade, albeit fluctuated, with the greatest number occurring in 2018. Among the 12 research themes related to online learning, the themes of Engagement and Learner Characteristics were studied the most and the theme of Instructor Characteristics was studied the least. Most studies were conducted in the higher education setting and approximately half of the studies used the quantitative method. Looking at the 12 themes by setting and method, we found that the patterns of the themes by setting or by method were not consistent across the 12 themes.

The quality of our findings was ensured by scientific and thorough searches and coding consistency. The selection of the 12 journals provides evidence of the representativeness and quality of primary studies. In the coding process, any difficulties and questions were resolved by consultations with the research team at bi-weekly meetings, which ensures the intra-rater and interrater reliability of coding. All these approaches guarantee the transparency and replicability of the process and the quality of our results.

5. Discussion

This review enabled us to identify the online learning research themes examined from 2009 to 2018. In the section below, we review the most studied research themes, engagement and learner characteristics along with implications, limitations, and directions for future research.

5.1. Most studied research themes

Three out of the four systematic reviews informing the design of the present study found that online learner characteristics and online engagement were examined in a high number of studies. In this review, about half of the studies reviewed (50.57%) focused on online learner characteristics or online engagement. This shows the continued importance of these two themes. In the Tallent-Runnels et al.’s (2006) study, the learner characteristics theme was identified as least studied for which they state that researchers are beginning to investigate learner characteristics in the early days of online learning.

One of the differences found in this review is that course design and development was examined in the least number of studies in this review compared to two prior systematic reviews ( Berge & Mrozowski, 2001 ; Zawacki-Richter et al., 2009 ). Zawacki-Richter et al. did not use a keyword search but reviewed all the articles in five different distance education journals. Berge and Mrozowski (2001) included a research theme called design issues to include all aspects of instructional systems design in distance education journals. In our study, in addition to course design and development, we also had focused themes on learner outcomes, course facilitation, course assessment and course evaluation. These are all instructional design focused topics and since we had multiple themes focusing on instructional design topics, the course design and development category might have resulted in fewer studies. There is still a need for more studies to focus on online course design and development.

5.2. Least frequently studied research themes

Three out of the four systematic reviews discussed in the opening of this study found management and organization factors to be least studied. In this review, Leadership, Policy, and Management was studied among 4.36% of the studies and Access, Culture, Equity, Inclusion, and Ethics was studied among 4.68% of the studies in the organizational level. The theme on Equity and accessibility was also found to be the least studied theme in the Berge and Mrozowski (2001) study. In addition, instructor characteristics was the least examined research theme among the twelve themes studied in this review. Only 3.39% of the studies were on instructor characteristics. While there were some studies examining instructor motivation and experiences, instructor ability to teach online, online instructor roles, and adjunct versus full-time online instructors, there is still a need to examine topics focused on instructors and online teaching. This theme was not included in the prior reviews as the focus was more on the learner and the course but not on the instructor. While it is helpful to see research evolving on instructor focused topics, there is still a need for more research on the online instructor.

5.3. Comparing research themes from current study to previous studies

The research themes from this review were compared with research themes from previous systematic reviews, which targeted prior decades. Table 8 shows the comparison.

Comparison of most and least studied online learning research themes from current to previous reviews.

Level1990–1999 ( )1993–2004 ( )2000–2008 ( )2009–2018 (Current Study)
Learner CharacteristicsLXXX
Engagement and InteractionLXXX
Design Issues/Instructional DesignCXX
Course Environment
Learner Outcomes
C
L
X
X
Learner SupportLX
Equity and AccessibilityOXX
Institutional& Administrative FactorsOXX
Management and OrganizationOXX
Cost-BenefitOX

L = Learner, C=Course O=Organization.

5.4. Need for more studies on organizational level themes of online learning

In this review there is a greater concentration of studies focused on Learner domain topics, and reduced attention to broader more encompassing research themes that fall into the Course and Organization domains. There is a need for organizational level topics such as Access, Culture, Equity, Inclusion and Ethics, and Leadership, Policy and Management to be researched on within the context of online learning. Examination of access, culture, equity, inclusion and ethics is very important to support diverse online learners, particularly with the rapid expansion of online learning across all educational levels. This was also least studied based on Berge and Mrozowski (2001) systematic review.

The topics on leadership, policy and management were least studied both in this review and also in the Tallent-Runnels et al. (2006) and Zawacki-Richter et al. (2009) study. Tallent-Runnels categorized institutional and administrative aspects into institutional policies, institutional support, and enrollment effects. While we included support as a separate category, in this study leadership, policy and management were combined. There is still a need for research on leadership of those who manage online learning, policies for online education, and managing online programs. In the Zawacki-Richter et al. (2009) study, only a few studies examined management and organization focused topics. They also found management and organization to be strongly correlated with costs and benefits. In our study, costs and benefits were collectively included as an aspect of management and organization and not as a theme by itself. These studies will provide research-based evidence for online education administrators.

6. Limitations

As with any systematic review, there are limitations to the scope of the review. The search is limited to twelve journals in the field that typically include research on online learning. These manuscripts were identified by searching the Education Research Complete database which focuses on education students, professionals, and policymakers. Other discipline-specific journals as well as dissertations and proceedings were not included due to the volume of articles. Also, the search was performed using five search terms “online learning" OR "online teaching" OR "online program" OR "online course" OR “online education” in title and keyword. If authors did not include these terms, their respective work may have been excluded from this review even if it focused on online learning. While these terms are commonly used in North America, it may not be commonly used in other parts of the world. Additional studies may exist outside this scope.

The search strategy also affected how we presented results and introduced limitations regarding generalization. We identified that only 8% of the articles published in these journals were related to online learning; however, given the use of search terms to identify articles within select journals it was not feasible to identify the total number of research-based articles in the population. Furthermore, our review focused on the topics and general methods of research and did not systematically consider the quality of the published research. Lastly, some journals may have preferences for publishing studies on a particular topic or that use a particular method (e.g., quantitative methods), which introduces possible selection and publication biases which may skew the interpretation of results due to over/under representation. Future studies are recommended to include more journals to minimize the selection bias and obtain a more representative sample.

Certain limitations can be attributed to the coding process. Overall, the coding process for this review worked well for most articles, as each tended to have an individual or dominant focus as described in the abstracts, though several did mention other categories which likely were simultaneously considered to a lesser degree. However, in some cases, a dominant theme was not as apparent and an effort to create mutually exclusive groups for clearer interpretation the coders were occasionally forced to choose between two categories. To facilitate this coding, the full-texts were used to identify a study focus through a consensus seeking discussion among all authors. Likewise, some studies focused on topics that we have associated with a particular domain, but the design of the study may have promoted an aggregated examination or integrated factors from multiple domains (e.g., engagement). Due to our reliance on author descriptions, the impact of construct validity is likely a concern that requires additional exploration. Our final grouping of codes may not have aligned with the original author's description in the abstract. Additionally, coding of broader constructs which disproportionately occur in the Learner domain, such as learner outcomes, learner characteristics, and engagement, likely introduced bias towards these codes when considering studies that involved multiple domains. Additional refinement to explore the intersection of domains within studies is needed.

7. Implications and future research

One of the strengths of this review is the research categories we have identified. We hope these categories will support future researchers and identify areas and levels of need for future research. Overall, there is some agreement on research themes on online learning research among previous reviews and this one, at the same time there are some contradicting findings. We hope the most-researched themes and least-researched themes provide authors a direction on the importance of research and areas of need to focus on.

The leading themes found in this review is online engagement research. However, presentation of this research was inconsistent, and often lacked specificity. This is not unique to online environments, but the nuances of defining engagement in an online environment are unique and therefore need further investigation and clarification. This review points to seven distinct classifications of online engagement. Further research on engagement should indicate which type of engagement is sought. This level of specificity is necessary to establish instruments for measuring engagement and ultimately testing frameworks for classifying engagement and promoting it in online environments. Also, it might be of importance to examine the relationship between these seven sub-themes of engagement.

Additionally, this review highlights growing attention to learner characteristics, which constitutes a shift in focus away from instructional characteristics and course design. Although this is consistent with the focus on engagement, the role of the instructor, and course design with respect to these outcomes remains important. Results of the learner characteristics and engagement research paired with course design will have important ramifications for the use of teaching and learning professionals who support instruction. Additionally, the review also points to a concentration of research in the area of higher education. With an immediate and growing emphasis on online learning in K-12 and corporate settings, there is a critical need for further investigation in these settings.

Lastly, because the present review did not focus on the overall effect of interventions, opportunities exist for dedicated meta-analyses. Particular attention to research on engagement and learner characteristics as well as how these vary by study design and outcomes would be logical additions to the research literature.

8. Conclusion

This systematic review builds upon three previous reviews which tackled the topic of online learning between 1990 and 2010 by extending the timeframe to consider the most recent set of published research. Covering the most recent decade, our review of 619 articles from 12 leading online learning journal points to a more concentrated focus on the learner domain including engagement and learner characteristics, with more limited attention to topics pertaining to the classroom or organizational level. The review highlights an opportunity for the field to clarify terminology concerning online learning research, particularly in the areas of learner outcomes where there is a tendency to classify research more generally (e.g., engagement). Using this sample of published literature, we provide a possible taxonomy for categorizing this research using subcategories. The field could benefit from a broader conversation about how these categories can shape a comprehensive framework for online learning research. Such efforts will enable the field to effectively prioritize research aims over time and synthesize effects.

Credit author statement

Florence Martin: Conceptualization; Writing - original draft, Writing - review & editing Preparation, Supervision, Project administration. Ting Sun: Methodology, Formal analysis, Writing - original draft, Writing - review & editing. Carl Westine: Methodology, Formal analysis, Writing - original draft, Writing - review & editing, Supervision

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

1 Includes articles that are cited in this manuscript and also included in the systematic review. The entire list of 619 articles used in the systematic review can be obtained by emailing the authors.*

Appendix B Supplementary data to this article can be found online at https://doi.org/10.1016/j.compedu.2020.104009 .

Appendix A. 

Research Themes by the Settings in the Online Learning Publications

Research ThemeHigher Ed (  = 506)Continuing Education (  = 58)K-12 (  = 53)Corporate/Military (  = 3)
Engagement15315120
Presence46230
Interaction35440
Community19240
Participation16500
Collaboration16100
Involvement13010
Communication8100
Learner Characteristics1061891
Self-regulation Characteristics43920
Motivation Characteristics18320
Academic Characteristics17020
Affective Characteristics12311
Cognitive Characteristics11120
Demographic Characteristics5200
Evaluation and Quality Assurance33320
Course Technologies33200
Course Facilitation30310
Institutional Support24081
Learner Outcome24710
Course Assessment23250
Access, Culture, Equity, Inclusion and Ethics26120
Leadership, Policy and Management17550
Course Design and Development21141
Instructor Characteristics16140

Research Themes by the Methodology in the Online Learning Publications

Research ThemeMixed Method (  = 95)Quantitative (  = 324)Qualitative (  = 200)
Engagement327869
Presence112514
Interaction92014
Community2914
Participation687
Collaboration2510
Involvement266
Communication054
Learner Characteristics1610018
Self-regulation Characteristics5436
Motivation Characteristics4154
Academic Characteristics1153
Affective Characteristics2123
Cognitive Characteristics482
Demographic Characteristics160
Evaluation and Quality Assurance52211
Course Technologies42011
Course Facilitation71413
Institutional Support12912
Learner Outcome3236
Course Assessment5205
Access, Culture, Equity, Inclusion & Ethics31313
Leadership, Policy and Management5913
Course Design and Development2817
Instructor Characteristics1812

Appendix B. Supplementary data

The following are the Supplementary data to this article:

References 1

  • Ahn J., Butler B.S., Alam A., Webster S.A. Learner participation and engagement in open online courses: Insights from the Peer 2 Peer University. MERLOT Journal of Online Learning and Teaching. 2013; 9 (2):160–171. * [ Google Scholar ]
  • Akcaoglu M., Lee E. Increasing social presence in online learning through small group discussions. International Review of Research in Open and Distance Learning. 2016; 17 (3) * [ Google Scholar ]
  • Allen I.E., Seaman J. Babson survey research group; 2017. Digital compass learning: Distance education enrollment Report 2017. [ Google Scholar ]
  • Amador J.A., Mederer H. Migrating successful student engagement strategies online: Opportunities and challenges using jigsaw groups and problem-based learning. Journal of Online Learning and Teaching. 2013; 9 (1):89. * [ Google Scholar ]
  • Anderson L.W., Bourke S.F. Routledge; 2013. Assessing affective characteristics in the schools. [ Google Scholar ]
  • Archibald D. Fostering the development of cognitive presence: Initial findings using the community of inquiry survey instrument. The Internet and Higher Education. 2010; 13 (1–2):73–74. * [ Google Scholar ]
  • Artino A.R., Jr., Stephens J.M. Academic motivation and self-regulation: A comparative analysis of undergraduate and graduate students learning online. The Internet and Higher Education. 2009; 12 (3–4):146–151. [ Google Scholar ]
  • Barnard L., Lan W.Y., To Y.M., Paton V.O., Lai S.L. Measuring self-regulation in online and blended learning environments. Internet and Higher Education. 2009; 12 (1):1–6. * [ Google Scholar ]
  • Bayeck R.Y., Hristova A., Jablokow K.W., Bonafini F. Exploring the relevance of single‐gender group formation: What we learn from a massive open online course (MOOC) British Journal of Educational Technology. 2018; 49 (1):88–100. * [ Google Scholar ]
  • Berge Z., Mrozowski S. Review of research in distance education, 1990 to 1999. American Journal of Distance Education. 2001; 15 (3):5–19. doi: 10.1080/08923640109527090. [ CrossRef ] [ Google Scholar ]
  • Berry S. Building community in online doctoral classrooms: Instructor practices that support community. Online Learning. 2017; 21 (2):n2. * [ Google Scholar ]
  • Boling E.C., Holan E., Horbatt B., Hough M., Jean-Louis J., Khurana C., Spiezio C. Using online tools for communication and collaboration: Understanding educators' experiences in an online course. The Internet and Higher Education. 2014; 23 :48–55. * [ Google Scholar ]
  • Bolliger D.U., Inan F.A. Development and validation of the online student connectedness survey (OSCS) International Review of Research in Open and Distance Learning. 2012; 13 (3):41–65. * [ Google Scholar ]
  • Bradford G., Wyatt S. Online learning and student satisfaction: Academic standing, ethnicity and their influence on facilitated learning, engagement, and information fluency. The Internet and Higher Education. 2010; 13 (3):108–114. * [ Google Scholar ]
  • Broadbent J. Comparing online and blended learner's self-regulated learning strategies and academic performance. The Internet and Higher Education. 2017; 33 :24–32. [ Google Scholar ]
  • Buzdar M., Ali A., Tariq R. Emotional intelligence as a determinant of readiness for online learning. International Review of Research in Open and Distance Learning. 2016; 17 (1) * [ Google Scholar ]
  • Capdeferro N., Romero M., Barberà E. Polychronicity: Review of the literature and a new configuration for the study of this hidden dimension of online learning. Distance Education. 2014; 35 (3):294–310. [ Google Scholar ]
  • Chaiprasurt C., Esichaikul V. Enhancing motivation in online courses with mobile communication tool support: A comparative study. International Review of Research in Open and Distance Learning. 2013; 14 (3):377–401. [ Google Scholar ]
  • Chen C.H., Wu I.C. The interplay between cognitive and motivational variables in a supportive online learning system for secondary physical education. Computers & Education. 2012; 58 (1):542–550. * [ Google Scholar ]
  • Cho H. Under co-construction: An online community of practice for bilingual pre-service teachers. Computers & Education. 2016; 92 :76–89. * [ Google Scholar ]
  • Cho M.H., Shen D. Self-regulation in online learning. Distance Education. 2013; 34 (3):290–301. [ Google Scholar ]
  • Cole M.T., Shelley D.J., Swartz L.B. Online instruction, e-learning, and student satisfaction: A three-year study. International Review of Research in Open and Distance Learning. 2014; 15 (6) * [ Google Scholar ]
  • Comer D.K., Clark C.R., Canelas D.A. Writing to learn and learning to write across the disciplines: Peer-to-peer writing in introductory-level MOOCs. International Review of Research in Open and Distance Learning. 2014; 15 (5):26–82. * [ Google Scholar ]
  • Cundell A., Sheepy E. Student perceptions of the most effective and engaging online learning activities in a blended graduate seminar. Online Learning. 2018; 22 (3):87–102. * [ Google Scholar ]
  • Cung B., Xu D., Eichhorn S. Increasing interpersonal interactions in an online course: Does increased instructor email activity and voluntary meeting time in a physical classroom facilitate student learning? Online Learning. 2018; 22 (3):193–215. [ Google Scholar ]
  • Cunningham U.M., Fägersten K.B., Holmsten E. Can you hear me, Hanoi?" Compensatory mechanisms employed in synchronous net-based English language learning. International Review of Research in Open and Distance Learning. 2010; 11 (1):161–177. [ Google Scholar ]
  • Davis D., Chen G., Hauff C., Houben G.J. Activating learning at scale: A review of innovations in online learning strategies. Computers & Education. 2018; 125 :327–344. [ Google Scholar ]
  • Delen E., Liew J., Willson V. Effects of interactivity and instructional scaffolding on learning: Self-regulation in online video-based environments. Computers & Education. 2014; 78 :312–320. [ Google Scholar ]
  • Dixson M.D. Measuring student engagement in the online course: The Online Student Engagement scale (OSE) Online Learning. 2015; 19 (4):n4. * [ Google Scholar ]
  • Dray B.J., Lowenthal P.R., Miszkiewicz M.J., Ruiz‐Primo M.A., Marczynski K. Developing an instrument to assess student readiness for online learning: A validation study. Distance Education. 2011; 32 (1):29–47. * [ Google Scholar ]
  • Dziuban C., Moskal P., Thompson J., Kramer L., DeCantis G., Hermsdorfer A. Student satisfaction with online learning: Is it a psychological contract? Online Learning. 2015; 19 (2):n2. * [ Google Scholar ]
  • Ergün E., Usluel Y.K. An analysis of density and degree-centrality according to the social networking structure formed in an online learning environment. Journal of Educational Technology & Society. 2016; 19 (4):34–46. * [ Google Scholar ]
  • Esfijani A. Measuring quality in online education: A meta-synthesis. American Journal of Distance Education. 2018; 32 (1):57–73. [ Google Scholar ]
  • Glazer H.R., Murphy J.A. Optimizing success: A model for persistence in online education. American Journal of Distance Education. 2015; 29 (2):135–144. [ Google Scholar ]
  • Glazer H.R., Wanstreet C.E. Connection to the academic community: Perceptions of students in online education. Quarterly Review of Distance Education. 2011; 12 (1):55. * [ Google Scholar ]
  • Hartnett M., George A.S., Dron J. Examining motivation in online distance learning environments: Complex, multifaceted and situation-dependent. International Review of Research in Open and Distance Learning. 2011; 12 (6):20–38. [ Google Scholar ]
  • Harwell M.R. 2012. Research design in qualitative/quantitative/mixed methods. Section III. Opportunities and challenges in designing and conducting inquiry. [ Google Scholar ]
  • Hung J.L. Trends of e‐learning research from 2000 to 2008: Use of text mining and bibliometrics. British Journal of Educational Technology. 2012; 43 (1):5–16. [ Google Scholar ]
  • Jiang W. Interdependence of roles, role rotation, and sense of community in an online course. Distance Education. 2017; 38 (1):84–105. [ Google Scholar ]
  • Ke F., Kwak D. Online learning across ethnicity and age: A study on learning interaction participation, perception, and learning satisfaction. Computers & Education. 2013; 61 :43–51. [ Google Scholar ]
  • Kent M. Changing the conversation: Facebook as a venue for online class discussion in higher education. MERLOT Journal of Online Learning and Teaching. 2013; 9 (4):546–565. * [ Google Scholar ]
  • Kim C., Park S.W., Cozart J. Affective and motivational factors of learning in online mathematics courses. British Journal of Educational Technology. 2014; 45 (1):171–185. [ Google Scholar ]
  • Kizilcec R.F., Pérez-Sanagustín M., Maldonado J.J. Self-regulated learning strategies predict learner behavior and goal attainment in Massive Open Online Courses. Computers & Education. 2017; 104 :18–33. [ Google Scholar ]
  • Kopp B., Matteucci M.C., Tomasetto C. E-tutorial support for collaborative online learning: An explorative study on experienced and inexperienced e-tutors. Computers & Education. 2012; 58 (1):12–20. [ Google Scholar ]
  • Koseoglu S., Doering A. Understanding complex ecologies: An investigation of student experiences in adventure learning programs. Distance Education. 2011; 32 (3):339–355. * [ Google Scholar ]
  • Kumi-Yeboah A. Designing a cross-cultural collaborative online learning framework for online instructors. Online Learning. 2018; 22 (4):181–201. * [ Google Scholar ]
  • Kuo Y.C., Walker A.E., Belland B.R., Schroder K.E. A predictive study of student satisfaction in online education programs. International Review of Research in Open and Distance Learning. 2013; 14 (1):16–39. * [ Google Scholar ]
  • Kuo Y.C., Walker A.E., Schroder K.E., Belland B.R. Interaction, Internet self-efficacy, and self-regulated learning as predictors of student satisfaction in online education courses. Internet and Higher Education. 2014; 20 :35–50. * [ Google Scholar ]
  • Lee J. An exploratory study of effective online learning: Assessing satisfaction levels of graduate students of mathematics education associated with human and design factors of an online course. International Review of Research in Open and Distance Learning. 2014; 15 (1) [ Google Scholar ]
  • Lee S.M. The relationships between higher order thinking skills, cognitive density, and social presence in online learning. The Internet and Higher Education. 2014; 21 :41–52. * [ Google Scholar ]
  • Lee K. Rethinking the accessibility of online higher education: A historical review. The Internet and Higher Education. 2017; 33 :15–23. [ Google Scholar ]
  • Lee Y., Choi J. A review of online course dropout research: Implications for practice and future research. Educational Technology Research & Development. 2011; 59 (5):593–618. [ Google Scholar ]
  • Li L.Y., Tsai C.C. Accessing online learning material: Quantitative behavior patterns and their effects on motivation and learning performance. Computers & Education. 2017; 114 :286–297. [ Google Scholar ]
  • Liyanagunawardena T., Adams A., Williams S. MOOCs: A systematic study of the published literature 2008-2012. International Review of Research in Open and Distance Learning. 2013; 14 (3):202–227. [ Google Scholar ]
  • Lowes S., Lin P., Kinghorn B.R. Gender differences in online high school courses. Online Learning. 2016; 20 (4):100–117. [ Google Scholar ]
  • Marbouti F., Wise A.F. Starburst: A new graphical interface to support purposeful attention to others' posts in online discussions. Educational Technology Research & Development. 2016; 64 (1):87–113. * [ Google Scholar ]
  • Martin F., Ahlgrim-Delzell L., Budhrani K. Systematic review of two decades (1995 to 2014) of research on synchronous online learning. American Journal of Distance Education. 2017; 31 (1):3–19. [ Google Scholar ]
  • Moore-Adams B.L., Jones W.M., Cohen J. Learning to teach online: A systematic review of the literature on K-12 teacher preparation for teaching online. Distance Education. 2016; 37 (3):333–348. [ Google Scholar ]
  • Murphy E., Rodríguez-Manzanares M.A. Rapport in distance education. International Review of Research in Open and Distance Learning. 2012; 13 (1):167–190. * [ Google Scholar ]
  • Nye A. Building an online academic learning community among undergraduate students. Distance Education. 2015; 36 (1):115–128. * [ Google Scholar ]
  • Olesova L., Slavin M., Lim J. Exploring the effect of scripted roles on cognitive presence in asynchronous online discussions. Online Learning. 2016; 20 (4):34–53. * [ Google Scholar ]
  • Orcutt J.M., Dringus L.P. Beyond being there: Practices that establish presence, engage students and influence intellectual curiosity in a structured online learning environment. Online Learning. 2017; 21 (3):15–35. * [ Google Scholar ]
  • Overbaugh R.C., Nickel C.E. A comparison of student satisfaction and value of academic community between blended and online sections of a university-level educational foundations course. The Internet and Higher Education. 2011; 14 (3):164–174. * [ Google Scholar ]
  • O'Shea S., Stone C., Delahunty J. “I ‘feel’like I am at university even though I am online.” Exploring how students narrate their engagement with higher education institutions in an online learning environment. Distance Education. 2015; 36 (1):41–58. * [ Google Scholar ]
  • Paechter M., Maier B. Online or face-to-face? Students' experiences and preferences in e-learning. Internet and Higher Education. 2010; 13 (4):292–297. [ Google Scholar ]
  • Phirangee K. Students' perceptions of learner-learner interactions that weaken a sense of community in an online learning environment. Online Learning. 2016; 20 (4):13–33. * [ Google Scholar ]
  • Phirangee K., Malec A. Othering in online learning: An examination of social presence, identity, and sense of community. Distance Education. 2017; 38 (2):160–172. * [ Google Scholar ]
  • Preisman K.A. Teaching presence in online education: From the instructor's point of view. Online Learning. 2014; 18 (3):n3. * [ Google Scholar ]
  • Rowe M. Developing graduate attributes in an open online course. British Journal of Educational Technology. 2016; 47 (5):873–882. * [ Google Scholar ]
  • Ruane R., Koku E.F. Social network analysis of undergraduate education student interaction in online peer mentoring settings. Journal of Online Learning and Teaching. 2014; 10 (4):577–589. * [ Google Scholar ]
  • Ruane R., Lee V.J. Analysis of discussion board interaction in an online peer mentoring site. Online Learning. 2016; 20 (4):79–99. * [ Google Scholar ]
  • Rye S.A., Støkken A.M. The implications of the local context in global virtual education. International Review of Research in Open and Distance Learning. 2012; 13 (1):191–206. * [ Google Scholar ]
  • Saadatmand M., Kumpulainen K. Participants' perceptions of learning and networking in connectivist MOOCs. Journal of Online Learning and Teaching. 2014; 10 (1):16. * [ Google Scholar ]
  • Shackelford J.L., Maxwell M. Sense of community in graduate online education: Contribution of learner to learner interaction. International Review of Research in Open and Distance Learning. 2012; 13 (4):228–249. * [ Google Scholar ]
  • Shea P., Bidjerano T. Does online learning impede degree completion? A national study of community college students. Computers & Education. 2014; 75 :103–111. * [ Google Scholar ]
  • Sherry L. Issues in distance learning. International Journal of Educational Telecommunications. 1996; 1 (4):337–365. [ Google Scholar ]
  • Slagter van Tryon P.J., Bishop M.J. Evaluating social connectedness online: The design and development of the social perceptions in learning contexts instrument. Distance Education. 2012; 33 (3):347–364. * [ Google Scholar ]
  • Swaggerty E.A., Broemmel A.D. Authenticity, relevance, and connectedness: Graduate students' learning preferences and experiences in an online reading education course. The Internet and Higher Education. 2017; 32 :80–86. * [ Google Scholar ]
  • Tallent-Runnels M.K., Thomas J.A., Lan W.Y., Cooper S., Ahern T.C., Shaw S.M., Liu X. Teaching courses online: A review of the research. Review of Educational Research. 2006; 76 (1):93–135. doi: 10.3102/00346543076001093. [ CrossRef ] [ Google Scholar ]
  • Tawfik A.A., Giabbanelli P.J., Hogan M., Msilu F., Gill A., York C.S. Effects of success v failure cases on learner-learner interaction. Computers & Education. 2018; 118 :120–132. [ Google Scholar ]
  • Thomas J. Exploring the use of asynchronous online discussion in health care education: A literature review. Computers & Education. 2013; 69 :199–215. [ Google Scholar ]
  • Thormann J., Fidalgo P. Guidelines for online course moderation and community building from a student's perspective. Journal of Online Learning and Teaching. 2014; 10 (3):374–388. * [ Google Scholar ]
  • Tibi M.H. Computer science students' attitudes towards the use of structured and unstructured discussion forums in fully online courses. Online Learning. 2018; 22 (1):93–106. * [ Google Scholar ]
  • Tsai C.W., Chiang Y.C. Research trends in problem‐based learning (pbl) research in e‐learning and online education environments: A review of publications in SSCI‐indexed journals from 2004 to 2012. British Journal of Educational Technology. 2013; 44 (6):E185–E190. [ Google Scholar ]
  • Tsai C.W., Fan Y.T. Research trends in game‐based learning research in online learning environments: A review of studies published in SSCI‐indexed journals from 2003 to 2012. British Journal of Educational Technology. 2013; 44 (5):E115–E119. [ Google Scholar ]
  • Tsai C.W., Shen P.D., Chiang Y.C. Research trends in meaningful learning research on e‐learning and online education environments: A review of studies published in SSCI‐indexed journals from 2003 to 2012. British Journal of Educational Technology. 2013; 44 (6):E179–E184. [ Google Scholar ]
  • Tsai C.W., Shen P.D., Fan Y.T. Research trends in self‐regulated learning research in online learning environments: A review of studies published in selected journals from 2003 to 2012. British Journal of Educational Technology. 2013; 44 (5):E107–E110. [ Google Scholar ]
  • U.S. Department of Education, Institute of Education Sciences . InstituteofEducationSciences; Washington,DC: 2017. What Works Clearinghouse procedures and standards handbook, version3.0. https://ies.ed.gov/ncee/wwc/Docs/referenceresources/wwc_procedures_v3_0_standards_handbook.pdf Retrievedfrom. [ Google Scholar ]
  • Veletsianos G., Shepherdson P. A systematic analysis and synthesis of the empirical MOOC literature published in 2013–2015. International Review of Research in Open and Distance Learning. 2016; 17 (2) [ Google Scholar ]
  • VERBI Software . 2019. MAXQDA 2020 online manual. Retrieved from maxqda. Com/help-max20/welcome [ Google Scholar ]
  • Verstegen D., Dailey-Hebert A., Fonteijn H., Clarebout G., Spruijt A. How do virtual teams collaborate in online learning tasks in a MOOC? International Review of Research in Open and Distance Learning. 2018; 19 (4) * [ Google Scholar ]
  • Wang Y., Baker R. Grit and intention: Why do learners complete MOOCs? International Review of Research in Open and Distance Learning. 2018; 19 (3) * [ Google Scholar ]
  • Wei C.W., Chen N.S., Kinshuk A model for social presence in online classrooms. Educational Technology Research & Development. 2012; 60 (3):529–545. * [ Google Scholar ]
  • Wicks D., Craft B.B., Lee D., Lumpe A., Henrikson R., Baliram N., Wicks K. An evaluation of low versus high collaboration in online learning. Online Learning. 2015; 19 (4):n4. * [ Google Scholar ]
  • Wise A.F., Perera N., Hsiao Y.T., Speer J., Marbouti F. Microanalytic case studies of individual participation patterns in an asynchronous online discussion in an undergraduate blended course. The Internet and Higher Education. 2012; 15 (2):108–117. * [ Google Scholar ]
  • Wisneski J.E., Ozogul G., Bichelmeyer B.A. Does teaching presence transfer between MBA teaching environments? A comparative investigation of instructional design practices associated with teaching presence. The Internet and Higher Education. 2015; 25 :18–27. * [ Google Scholar ]
  • Wladis C., Hachey A.C., Conway K. An investigation of course-level factors as predictors of online STEM course outcomes. Computers & Education. 2014; 77 :145–150. * [ Google Scholar ]
  • Wladis C., Samuels J. Do online readiness surveys do what they claim? Validity, reliability, and subsequent student enrollment decisions. Computers & Education. 2016; 98 :39–56. [ Google Scholar ]
  • Yamagata-Lynch L.C. Blending online asynchronous and synchronous learning. International Review of Research in Open and Distance Learning. 2014; 15 (2) * [ Google Scholar ]
  • Yang J., Kinshuk, Yu H., Chen S.J., Huang R. Strategies for smooth and effective cross-cultural online collaborative learning. Journal of Educational Technology & Society. 2014; 17 (3):208–221. * [ Google Scholar ]
  • Yeboah A.K., Smith P. Relationships between minority students online learning experiences and academic performance. Online Learning. 2016; 20 (4):n4. * [ Google Scholar ]
  • Yu T. Examining construct validity of the student online learning readiness (SOLR) instrument using confirmatory factor analysis. Online Learning. 2018; 22 (4):277–288. * [ Google Scholar ]
  • Yukselturk E., Bulut S. Gender differences in self-regulated online learning environment. Educational Technology & Society. 2009; 12 (3):12–22. [ Google Scholar ]
  • Yukselturk E., Top E. Exploring the link among entry characteristics, participation behaviors and course outcomes of online learners: An examination of learner profile using cluster analysis. British Journal of Educational Technology. 2013; 44 (5):716–728. [ Google Scholar ]
  • Zawacki-Richter O., Backer E., Vogt S. Review of distance education research (2000 to 2008): Analysis of research areas, methods, and authorship patterns. International Review of Research in Open and Distance Learning. 2009; 10 (6):30. doi: 10.19173/irrodl.v10i6.741. [ CrossRef ] [ Google Scholar ]
  • Zhu M., Sari A., Lee M.M. A systematic review of research methods and topics of the empirical MOOC literature (2014–2016) The Internet and Higher Education. 2018; 37 :31–39. [ Google Scholar ]
  • Zimmerman T.D. Exploring learner to content interaction as a success factor in online courses. International Review of Research in Open and Distance Learning. 2012; 13 (4):152–165. [ Google Scholar ]

Advertisement

Advertisement

Online learning in higher education: exploring advantages and disadvantages for engagement

  • Published: 03 April 2018
  • Volume 30 , pages 452–465, ( 2018 )

Cite this article

advantages of online learning research paper

  • Amber D. Dumford 1 &
  • Angie L. Miller   ORCID: orcid.org/0000-0002-5828-235X 2  

64k Accesses

451 Citations

32 Altmetric

Explore all metrics

As the popularity of online education continues to rise, many colleges and universities are interested in how to best deliver course content for online learners. This study explores the ways in which taking courses through an online medium impacts student engagement, utilizing data from the National Survey of Student Engagement. Data was analyzed using a series of ordinary least squares regression models, also controlling for relevant student and institutional characteristics. The results indicated numerous significant relationships between taking online courses and student engagement for both first-year students and seniors. Those students taking greater numbers of online courses were more likely to engage in quantitative reasoning. However, they were less likely to engage in collaborative learning, student-faculty interactions, and discussions with diverse others, compared to their more traditional classroom counterparts. The students with greater numbers of online courses also reported less exposure to effective teaching practices and lower quality of interactions. The relationship between these engagement indicators and the percentage of classes taken online suggests that an online environment might benefit certain types of engagement, but may also be somewhat of a deterrent to others. Institutions should consider these findings when designing online course content, and encourage faculty to contemplate ways of encouraging student engagement across a variety of delivery types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

Similar content being viewed by others

Instructional strategies to help online students learn: feedback from online students.

advantages of online learning research paper

Graduate Students’ Use and Perceived Value of Learning Resources in Learning the Content in an Online Course

advantages of online learning research paper

Improving Student Engagement, Retention and Success in Online Learning

Explore related subjects.

  • Artificial Intelligence
  • Digital Education and Educational Technology

Allen, E., & Seaman, J. (2013). Changing course: Ten years of tracking online education in the United States . Babson Park, MA: Babson Survey Research Group.

Google Scholar  

Anaya, G. (1999). College impact on student learning: Comparing the use of self-reported gains, standardized test scores, and college grades. Research in Higher Education, 40, 499–526.

Article   Google Scholar  

Astin, A. W. (1993). What matters in college? Four critical years revisited . San Francisco, CA: Jossey-Bass.

Baird, L. (2005). College environments and climates: Assessments and their theoretical assumptions. Higher Education: Handbook of Theory and Research, 10, 507–537.

Braten, I., & Streomso, H. I. (2006). Epistemological beliefs, interest, and gender as predictors of Internet-based learning activities. Computers in Human Behavior, 22 (6), 1027–1042.

Cabrera, A. F., Crissman, J. L., Bernal, E. M., Nora, A., Terenzini, P. T., & Pascarella, E. T. (2002). Collaborative learning: Its impact on college students’ development and diversity. Journal of College Student Development, 43 (1), 20–34.

Chen, P. D., Lambert, A. D., & Guidry, K. R. (2010). Engaging online learners: The impact of web-based learning technology on student engagement. Computers & Education, 54, 1222–1232.

Cohen, V. L. (2003). Distance learning instruction: A new model of assessment. Journal of Computing in Higher Education, 14 (2), 98–120.

Dominguez, P. S., & Ridley, D. R. (2001). Assessing distance education courses and discipline differences in effectiveness. Journal of Instructional Psychology, 28 (1), 15–19.

Drysdale, J. S., Graham, C. R., Spring, K. J., & Halverson, L. R. (2013). An analysis of research trends in dissertations and theses studying blended learning. Internet and Higher Education, 17, 90–100. https://doi.org/10.1016/j.iheduc.2012.11.003 .

Evans, C. (2014). Twitter for teaching: Can social media be used to enhance the process of learning? British Journal of Educational Technology, 45 (5), 902–915.

Field, A. (2009). Discovering statistics using SPSS (3rd ed.). London: Sage Publications.

Friedman, J. (2014). Online education by discipline: A graduate student’s guide . Retrieved from http://www.usnews.com/education/online-education/articles/2014/09/17/online-education-by-discipline-a-graduate-students-guide .

Han, I., & Shin, W. S. (2016). The use of a mobile learning management system and academic achievement of online students. Computers & Education, 102, 79–89. https://doi.org/10.1016/j.compedu.2016.07.003 .

Hayek, J. C., Carini, R. M., O’Day, P. T., & Kuh, G. D. (2002). Triumph or tragedy: Comparing student engagement levels of members of Greek-letter organizations and other students. Journal of College Student Development, 43 (5), 643–663.

Henrie, C. R., Halverson, L. R., & Graham, C. R. (2015). Measuring student engagement in technology-mediated learning: A review. Computers & Education, 90, 36–53. https://doi.org/10.1016/j.compedu.2015.09.005 .

Hu, S., & Kuh, G. D. (2001). Computing experience and good practices in undergraduate education: Does the degree of campus ‘‘wiredness” matter? Education Policy Analysis Archives, 9 (49). http://epaa.asu.edu/epaa/v9n49.html .

Jacob, S., & Radhai, S. (2016). Trends in ICT e-learning: Challenges and expectations. International Journal of Innovative Research & Development, 5 (2), 196–201.

Junco, R. (2012). The relationship between frequency of Facebook use, participation in Facebook activities, and student engagement. Computers & Education, 58 (1), 162–171.

Junco, R., Elavsky, C. M., & Heiberger, G. (2013). Putting Twitter to the test: Assessing outcomes for student collaboration, engagement, and success. British Journal of Educational Technology, 44 (2), 273–287.

Junco, R., Heiberger, G., & Loken, E. (2010). The effect of Twitter on college student engagement and grades. Journal of Computer Assisted learning . https://doi.org/10.1111/j.1365-2729.2010.00387.x .

Kent, C., Laslo, E., & Rafaeli, S. (2016). Interactivity in online discussions and learning outcomes. Computers & Education, 97, 116–128. https://doi.org/10.1016/j.compedu.2016.03.002 .

Kim, K. J., & Bonk, C. J. (2006). The future of online teaching and learning in higher education: The survey says…. Educause Quarterly, 4, 22–30.

Kuh, G. D. (2001). The National Survey of Student Engagement: Conceptual framework and overview of psychometric properties . Bloomington, IN: Indiana University, Center for Postsecondary Research.

Kuh, G. D., & Hu, S. (2001a). The effects of student-faculty interaction in the 1990s. Review of Higher Education, 24 (3), 309–332.

Kuh, G. D., & Hu, S. (2001b). The relationships between computer and information technology use, student learning, and other college experiences. Journal of College Student Development, 42, 217–232.

McMillan, J. H., & Schumacher, S. (2001). Research in education: A conceptual introduction . New York: Longman.

Miller, A. L. (2012). Investigating social desirability bias in student self-report surveys. Educational Research Quarterly, 36 (1), 30–47.

Miller, A. L., Sarraf, S. A., Dumford, A. D., & Rocconi, L. M. (2016). Construct validity of NSSE engagement indicators (NSSE psychometric portfolio report). Bloomington, IN: Center for Postsecondary Research, Indiana University, School of Education. http://nsse.indiana.edu/pdf/psychometric_portfolio/Validity_ConstructValidity_FactorAnalysis_2013.pdf .

Moore, M. G., & Kearsley, G. (2011). Distance education: A systems view of online learning . Belmont, CA: Wadsworth.

Murayama, K., & Elliot, A. J. (2009). The joint influence of personal achievement goals and classroom goal structures on achievement-relevant outcomes. Journal of Educational Psychology, 101 (2), 432–447. https://doi.org/10.1037/a0014221 .

National Survey of Student Engagement. (2015). NSSE 2015 overview . Bloomington, IN: Indiana University, Center for Postsecondary Research.

Nelson Laird, T. F., Shoup, R., & Kuh, G. D. (2005). Measuring deep approaches to learning using the National Survey of Student Engagement . Paper presented at the annual meeting of the Association for Institutional Research, Chicago, IL. http://nsse.iub.edu/pdf/conference_presentations/2006/AIR2006DeepLearningFINAL.pdf .

Ormrod, J. E. (2011). Human learning (6th ed.). Upper Saddle River, NJ: Pearson.

Pace, C. R. (1980). Measuring the quality of student effort. Current issues in Higher Education, 2, 10–16.

Parsad, B., & Lewis, L. (2008). Distance education at degree-granting Postsecondary Institutions: 2006–2007 (NCES 2009–044). National Center for Education Statistics, Institute of Education Sciences. Washington, DC: US Department of Education. http://nces.ed.gov/pubs2009/2009044.pdf .

Pascarella, E. T., & Terenzini, P. T. (2005). How college affects students: A third decade of research (Vol. 2). San Francisco, CA: Jossey-Bass.

Pike, G. R. (1995). The relationship between self-reports of college experiences and achievement test scores. Research in Higher Education, 36 (1), 1–22.

Pintrich, P. R. (2004). A conceptual framework for assessing motivation and self-regulated learning in college students. Educational Psychology Review, 16 (4), 385–407. https://doi.org/10.1007/s10648-004-0006-x .

Pollack, P. H., & Wilson, B. M. (2002). Evaluating the impact of internet teaching: Preliminary evidence from American national government classes. PS. Political Science and Politics, 35 (3), 561–566.

Pukkaew, C. (2013). Assessment of the effectiveness of internet-based distance learning through the VClass e-Education platform. International Review of Research in Open and Distance Learning, 14 (4), 255–276.

Restauri, S. L., King, F. L., & Nelson, J. G. (2001). Assessment of students’ ratings for two methodologies of teaching via distance learning: An evaluative approach based on accreditation . ERIC document 460-148, reports-research (143).

Richardson, J. T. E., Morgan, A., & Woodley, A. (1999). Approaches to studying distance education. Higher Education, 37, 23–55.

Robinson, C. C., & Hullinger, H. (2008). New benchmarks in higher education: Student engagement in online learning. Journal of Education for Business, 84 (2), 101–108.

Serwatka, J. A. (2002). Improving student performance in distance learning courses. Technological Horizons in Education THE Journal, 29 (9), 48–51.

Shuey, S. (2002). Assessing online learning in higher education. Journal of Instruction Delivery Systems, 16, 13–18.

Stallings, D. (2002). Measuring success in the virtual university. The Journal of Academic Librarianship, 28, 47–53.

Tabachnick, B. G., & Fidell, L. S. (2001). Using multivariate statistics (4th ed.). Needham Heights, MA: Allyn & Bacon.

Tess, P. A. (2013). The role of social media in higher education classes (real and virtual)—A literature review. Computers in Human Behavior, 29 (3), A60–A68.

Thurmond, V., & Wambach, K. (2004). Understanding interactions in distance education: A review of the literature. International Journal of Instructional Technology & Distance Learning, 1 , 9–33. http://www.itdl.org/journal/Jan_04/article02.htm .

Tomei, L. A. (2006). The impact of online teaching on faculty load: Computing the ideal class size for online courses. Journal of Technology and Teacher Education, 14, 531–541.

Umbach, P. D. (2007). How effective are they? Exploring the impact of contingent faculty on undergraduate education. Review of Higher Education, 30 (2), 91–123. https://doi.org/10.1353/rhe.2006.0080 .

U.S. Department of Education, National Center for Education Statistics. (2016). Digest of education statistics, 2014 (NCES 2016-006), Table 311.15. Retrieved from https://nces.ed.gov/fastfacts/display.asp?id=80 .

Whitley, B. E. (2002). Principles of research in behavioral science (2nd ed.). New York, NY: Routlegde.

Wijekumar, K., Ferguson, L., & Wagoner, D. (2006). Problems with assessment validity and reliability in wed-based distance learning environments and solutions. Journal of Educational Multimedia and Hypermedia, 15 (2), 199–215.

Wojciechowski, A., & Palmer, L. B. (2005). Individual student characteristics: Can any be predictors of success in online classes? Online Journal of Distance Learning Administration, 8 (2), 13.

Wu, W., Wu, Y. J., Chen, C., Kao, H., & Lin, C. (2012). Review of trends from mobile learning studies: A meta-analysis. Computers & Education, 59, 817–827. https://doi.org/10.1016/j.compedu.2012.03.016 .

Xu, D., & Smith Jaggars, S. (2013). Adaptability to online learning: Differences across types of students and academic subject areas (CCRC Working Paper). New York, NY: Teachers College, Columbia University. Retrieved from http://ccrc.tc.columbia.edu/publications/adaptability-to-online-learning.html .

Zhou, L., & Zhang, D. (2008). Web 2.0 impact on student learning process. In K. McFerrin et al. (Eds.), Proceedings of society for information technology and teacher education international conference (pp. 2880–2882). Chesapeake, VA: AACE.

Download references

Author information

Authors and affiliations.

University of South Florida, 4202 E Fowler Ave, EDU 105, Tampa, FL, 33620, USA

Amber D. Dumford

Indiana University Bloomington, 1900 E. 10th St, Suite 419, Bloomington, IN, 47406, USA

Angie L. Miller

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Angie L. Miller .

Ethics declarations

Conflict of interest.

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Dumford, A.D., Miller, A.L. Online learning in higher education: exploring advantages and disadvantages for engagement. J Comput High Educ 30 , 452–465 (2018). https://doi.org/10.1007/s12528-018-9179-z

Download citation

Published : 03 April 2018

Issue Date : December 2018

DOI : https://doi.org/10.1007/s12528-018-9179-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Online education
  • Higher education
  • Student engagement
  • Find a journal
  • Publish with us
  • Track your research

IMAGES

  1. Advantages of

    advantages of online learning research paper

  2. 7 Advantages Of Online Learning For Students And Working Professionals

    advantages of online learning research paper

  3. Top 5 effective online learning strategies for students

    advantages of online learning research paper

  4. Advantages And Disadvantages Of Online Learning

    advantages of online learning research paper

  5. Major Benefits of Online Education http://www.researchomatic.com/online-education-132406.html

    advantages of online learning research paper

  6. 5 Benefits of Online Learning: Why Online Learning is the Future of Education?

    advantages of online learning research paper

VIDEO

  1. Big Mart Sales Prediction using Machine Learning

  2. Session-7: Introduction to Artificial Intelligence

  3. VLOG #1 ::STUDY WITH ME( MSc. Comp Scie). 1st vlog ever🥺

  4. Unit-3 Operational Terms in Research/Basic Research in Population Education/B.Ed. 3rd Year/Solution

  5. Should You Attend Northeastern University?😰 Pros and Cons Explained

  6. Research Tips 1.2 (Case study: research paper deconstruction)

COMMENTS

  1. The effects of online education on academic success: A meta ...

    The advantages of online learning compared to face-to-face learning in the classroom is the flexibility of learning time in online learning, the learning time does not include a single program, and it can be shaped according to circumstances (Lai et al., 2019). The next advantage is the ease of collecting assignments for students, as these can ...

  2. Online and face‐to‐face learning: Evidence from students ...

    We also observe lower academic performance for students who found transitioning to online difficult and who expressed a preference for self‐study (i.e. reading through class slides and notes) over assisted study (i.e. joining live lectures or watching recorded lectures).

  3. Effectiveness of online and blended learning from schools: A ...

    This systematic analysis examines effectiveness research on online and blended learning from schools, particularly relevant during the Covid-19 pandemic, and also educational games, computer-supporte...

  4. The Effectiveness of Online Learning: Beyond No Significant ...

    This study examines the evidence of the effectiveness of online learning by organizing and summarizing the findings and challenges of online learning into positive, negative, mixed, and...

  5. Assessing the Impact of Online-Learning Effectiveness and ...

    The result of this research showed that learning objectives could enable universities to increase the effectiveness of students’ online learning by motivating students to join online classes and developing appropriate learning strategies for their individual needs.

  6. Advantages and Disadvantages of Using e-Learning in ... - ed

    The implementation of e-learning in education has been favourable in multiple contexts. Previous studies, have presented several advantages associated by the implementation of e-learning technologies into university education (Raspopovic et al., 2017).

  7. Online education in the post-COVID era | Nature Electronics

    Metrics. The coronavirus pandemic has forced students and educators across all levels of education to rapidly adapt to online learning. The impact of this — and the developments required to...

  8. Advantages, Limitations and Recommendations for online ...

    The advantages included remote learning, comfort, accessibility, while the limitations involved inefficiency and difficulty in maintaining academic integrity. The recommendations were to train faculty on using online modalities and developing lesson plan with reduced cognitive load and increased interactivities.

  9. A systematic review of research on online teaching and ...

    These three systematic reviews provide a broad understanding of distance education and online learning research themes from 1990 to 2008. However, there is an increase in the number of research studies on online learning in this decade and there is a need to identify recent research themes examined.

  10. Online learning in higher education: exploring advantages and ...

    It is crucial to explore the current situations and issues with higher education online learning to provide a better context for ways in which the student experience might be improved. Online learning has several characteristics that can have an impact on faculty implementation and course progress.