Examples

Hypothesis For Kids

Ai generator.

what is hypothesis kid friendly definition

Crafting a hypothesis isn’t just for scientists in white lab coats; even young budding researchers can join in the fun! When kids learn to frame their curious wonders as hypothesis statements, they pave the way for exciting discoveries. Our guide breaks down the world of hypothesis writing into kid-friendly chunks, complete with relatable thesis statement examples and easy-to-follow tips. Dive in to spark a love for inquiry and nurture young scientific minds!

What is an example of a Hypothesis for Kids?

Question: Do plants grow taller when they are watered with coffee instead of water?

Hypothesis: If I water a plant with coffee instead of water, then the plant will not grow as tall because coffee might have substances that aren’t good for plants.

This hypothesis is based on a simple observation or question a child might have, and it predicts a specific outcome (the plant not growing as tall) due to a specific condition (being watered with coffee). It’s presented in simple language suitable for kids.

100 Kids Hypothesis Statement Examples

Kids Hypothesis Statement Examples

Size: 170 KB

Children’s innate curiosity lays the foundation for numerous questions about the world around them. Framing these questions as good hypothesis statements can transform them into exciting learning experiments. Presented below are relatable and straightforward examples crafted especially for young minds, offering them a structured way to articulate their wonders and predictions.

  • Sunlight & Plant Growth : If a plant gets more sunlight, then it will grow taller.
  • Sugary Drinks & Tooth Decay : Drinking sugary drinks daily will lead to faster tooth decay.
  • Chocolates & Energy : Eating chocolate will make me feel more energetic.
  • Moon Phases & Sleep : I’ll sleep more during a full moon night.
  • Homework & Weekend Moods : If I finish my homework on Friday, I’ll be happier over the weekend.
  • Pets & Happiness : Owning a pet will make a child happier.
  • Rain & Worms : Worms come out more after it rains.
  • Shadows & Time of Day : Shadows are longer in the evening than at noon.
  • Snow & School Holidays : More snow means there’s a better chance of school being canceled.
  • Ice Cream & Brain Freeze : Eating ice cream too fast will give me a brain freeze.
  • Video Games & Dreams : Playing video games before bed might make my dreams more vivid.
  • Green Vegetables & Strength : Eating more green vegetables will make me stronger.
  • Bicycles & Balance : The more I practice, the better I’ll get at riding my bike without training wheels.
  • Stars & Wishes : If I wish on the first star I see at night, my wish might come true.
  • Cartoons & Laughing : Watching my favorite cartoon will always make me laugh.
  • Soda & Bone Health : Drinking soda every day will make my bones weaker.
  • Beach Visits & Sunburn : If I don’t wear sunscreen at the beach, I’ll get sunburned.
  • Loud Noises & Pet Behavior : My cat hides when she hears loud noises.
  • Bedtime & Morning Energy : Going to bed early will make me feel more energetic in the morning.
  • Healthy Snacks & Hunger : Eating a healthy snack will keep me full for longer. …
  • Toys & Sharing : The more toys I have, the more I want to share with my friends.
  • Homemade Cookies & Taste : Homemade cookies always taste better than store-bought ones.
  • Books & Imagination : The more books I read, the more adventures I can imagine.
  • Jumping & Height : The more I practice, the higher I can jump.
  • Singing & Mood : Singing my favorite song always makes me happy.
  • Snowmen & Temperature : If the temperature rises, my snowman will melt faster.
  • Costumes & Play : Wearing a costume will make playtime more fun.
  • Gardening & Patience : Waiting for my plants to grow teaches me patience.
  • Night Lights & Sleep : Having a night light makes it easier for me to sleep.
  • Handwriting & Practice : The more I practice, the better my handwriting will become.
  • Painting & Creativity : Using more colors in my painting lets me express my creativity better.
  • Puzzles & Problem Solving : The more puzzles I solve, the better I become at problem-solving.
  • Dancing & Coordination : The more I dance, the more coordinated I will become.
  • Stargazing & Constellations : If I stargaze every night, I’ll recognize more constellations.
  • Bird Watching & Species Knowledge : The more I watch birds, the more species I can identify.
  • Cooking & Skill : If I help in the kitchen often, I’ll become a better cook.
  • Swimming & Confidence : The more I swim, the more confident I become in the water.
  • Trees & Birds’ Nests : The taller the tree, the more likely it is to have birds’ nests.
  • Roller Skating & Balance : If I roller skate every weekend, I’ll improve my balance.
  • Drawing & Observation : The more I draw, the better I become at observing details.
  • Sandcastles & Water : If I use wet sand, I can build a stronger sandcastle.
  • Hiking & Endurance : The more I hike, the farther I can walk without getting tired.
  • Camping & Outdoor Skills : If I go camping often, I’ll learn more about surviving outdoors.
  • Magic Tricks & Practice : The more I practice a magic trick, the better I’ll get at performing it.
  • Stickers & Collection : If I collect stickers, my album will become more colorful.
  • Board Games & Strategy : The more board games I play, the better strategist I’ll become.
  • Pets & Responsibility : The more I take care of my pet, the more responsible I become.
  • Music & Concentration : Listening to calm music while studying will help me concentrate better.
  • Photographs & Memories : The more photos I take, the more memories I can preserve.
  • Rainbows & Rain : If it rains while the sun is out, I might see a rainbow.
  • Museums & Knowledge : Every time I visit a museum, I learn something new.
  • Fruits & Health : Eating more fruits will keep me healthier.
  • Stories & Vocabulary : The more stories I listen to, the more new words I learn.
  • Trees & Fresh Air : The more trees there are in a park, the fresher the air will be.
  • Diary & Feelings : Writing in my diary helps me understand my feelings better.
  • Planets & Telescopes : If I look through a telescope, I’ll see more planets clearly.
  • Crafting & Creativity : The more crafts I make, the more creative I become.
  • Snowflakes & Patterns : Every snowflake has a unique pattern.
  • Jokes & Laughter : The funnier the joke, the louder I’ll laugh.
  • Riddles & Thinking : Solving riddles makes me think harder.
  • Nature Walks & Observations : The quieter I am on a nature walk, the more animals I’ll spot.
  • Building Blocks & Structures : The more blocks I use, the taller my tower will be.
  • Kites & Wind : If there’s more wind, my kite will fly higher.
  • Popcorn & Movie Nights : Watching a movie with popcorn makes it more enjoyable.
  • Stars & Wishes : If I see a shooting star, I should make a wish.
  • Diets & Energy : Eating a balanced diet gives me more energy for playtime.
  • Clay & Sculptures : The more I play with clay, the better my sculptures will be.
  • Insects & Magnifying Glass : Using a magnifying glass will let me see more details of tiny insects.
  • Aquarium Visits & Marine Knowledge : Every time I visit the aquarium, I discover a new marine creature.
  • Yoga & Flexibility : If I practice yoga daily, I’ll become more flexible.
  • Toothpaste & Bubbles : The more toothpaste I use, the more bubbles I’ll get while brushing.
  • Journals & Memories : Writing in my journal every day helps me remember special moments.
  • Piggy Banks & Savings : The more coins I save, the heavier my piggy bank will get.
  • Baking & Measurements : If I measure ingredients accurately, my cake will turn out better.
  • Coloring Books & Art Skills : The more I color, the better I get at staying inside the lines.
  • Picnics & Outdoor Fun : Having a picnic makes a sunny day even more enjoyable.
  • Recycling & Environment : The more I recycle, the cleaner my environment will be.
  • Treasure Hunts & Discoveries : Every treasure hunt has a new discovery waiting.
  • Milk & Bone Health : Drinking milk daily will make my bones stronger.
  • Puppet Shows & Stories : The more puppet shows I watch, the more stories I learn.
  • Field Trips & Learning : Every field trip to a new place teaches me something different.
  • Chores & Responsibility : The more chores I do, the more responsible I feel.
  • Fishing & Patience : Fishing teaches me to be patient while waiting for a catch.
  • Fairy Tales & Imagination : Listening to fairy tales expands my imagination.
  • Homemade Pizza & Toppings : The more toppings I add, the tastier my homemade pizza will be.
  • Gardens & Butterflies : If I plant more flowers, I’ll see more butterflies in my garden.
  • Raincoats & Puddles : Wearing a raincoat lets me jump in puddles without getting wet.
  • Gymnastics & Balance : The more I practice gymnastics, the better my balance will be.
  • Origami & Craft Skills : The more origami I fold, the better my craft skills become.
  • Basketball & Shooting Skills : The more I practice, the better I get at shooting baskets.
  • Fireflies & Night Beauty : Catching fireflies makes summer nights magical.
  • Books & Knowledge : The more books I read, the smarter I become.
  • Pillows & Forts : With more pillows, I can build a bigger fort.
  • Lemonade & Summers : Drinking lemonade makes hot summer days refreshing.
  • Bicycles & Balance : The more I practice, the better I get at riding my bike without training wheels.
  • Pencils & Drawings : If I have colored pencils, my drawings will be more colorful.
  • Ice Cream & Happiness : Eating ice cream always makes me happy.
  • Beach Visits & Shell Collections : Every time I visit the beach, I find new shells for my collection.
  • Jump Ropes & Fitness : The more I jump rope, the fitter I become.
  • Tea Parties & Imagination : Hosting tea parties lets my imagination run wild.

Simple Hypothesis Statement Examples for Kids

Simple hypothesis are straightforward predictions that can be tested easily. They help children understand the relationship between two variables. Here are some examples tailored just for kids.

  • Plants & Sunlight : Plants placed near the window will grow taller than those in the dark.
  • Chocolates & Happiness : Eating chocolates can make kids feel happier.
  • Rain & Puddles : The more it rains, the bigger the puddles become.
  • Homework & Learning : Doing homework helps kids understand lessons better.
  • Toys & Sharing : Sharing toys with friends makes playtime more fun.
  • Pets & Care : Taking care of a pet fish helps it live longer.
  • Storytime & Sleep : Listening to a bedtime story helps kids sleep faster.
  • Brushing & Cavity : Brushing teeth daily prevents cavities.
  • Games & Skill : Playing a new game every day improves problem-solving skills.
  • Baking & Patience : Waiting for cookies to bake teaches patience.

Hypothesis Statement Examples for Kids Psychology

Child psychology hypothesis delves into how kids think, behave, and process emotions. These hypotheses help understand the psychological aspects of children’s behaviors.

  • Emotions & Colors : Kids might feel calm when surrounded by blue and energetic with red.
  • Friendship & Self-esteem : Making friends can boost a child’s self-confidence.
  • Learning Styles & Memory : Some kids remember better by seeing, while others by doing.
  • Play & Development : Pretend play is crucial for cognitive development.
  • Rewards & Motivation : Giving small rewards can motivate kids to finish tasks.
  • Music & Mood : Listening to soft music can calm a child’s anxiety.
  • Sibling Bonds & Sharing : Having siblings can influence a child’s willingness to share.
  • Feedback & Performance : Positive feedback can improve a kid’s academic performance.
  • Outdoor Play & Attention Span : Playing outside can help kids concentrate better in class.
  • Dreams & Reality : Kids sometimes can’t differentiate between dreams and reality.

Hypothesis Examples in Kid Friendly Words

Phrasing hypothesis in simple words makes it relatable and easier for kids to grasp. Here are examples with kid-friendly language.

  • Socks & Warmth : Wearing socks will keep my toes toasty.
  • Jumping & Energy : The more I jump, the more energy I feel.
  • Sandcastles & Water : A little water makes my sandcastle stand tall.
  • Stickers & Smiles : Getting a sticker makes my day shine brighter.
  • Rainbows & Rain : After the rain, I might see a rainbow.
  • Slides & Speed : The taller the slide, the faster I go.
  • Hugs & Love : Giving hugs makes me and my friends feel loved.
  • Stars & Counting : The darker it is, the more stars I can count.
  • Paint & Mess : The more paint I use, the messier it gets.
  • Bubbles & Wind : If I blow my bubble wand, the wind will carry them high.

Hypothesis Statement Examples for Kids in Research

Even in a research setting, research hypothesis should be age-appropriate for kids. These examples focus on concepts children might encounter in structured studies.

  • Reading & Vocabulary : Kids who read daily might have a richer vocabulary.
  • Games & Math Skills : Playing number games can improve math skills.
  • Experiments & Curiosity : Conducting science experiments can make kids more curious.
  • Doodles & Creativity : Drawing daily might enhance a child’s creativity.
  • Learning Methods & Retention : Kids who learn with visuals might remember lessons better.
  • Discussions & Understanding : Talking about a topic can deepen understanding.
  • Observation & Knowledge : Observing nature can increase a kid’s knowledge about the environment.
  • Puzzles & Cognitive Skills : Solving puzzles regularly might enhance logical thinking.
  • Music & Rhythmic Abilities : Kids who practice music might develop better rhythm skills.
  • Teamwork & Social Skills : Group projects can boost a child’s social skills.

Hypothesis Statement Examples for Kids Science Fair

Science fairs are a chance for kids to delve into the world of experiments and observations. Here are hypotheses suitable for these events.

  • Magnet & Metals : Certain metals will be attracted to a magnet.
  • Plants & Colored Light : Plants might grow differently under blue and red lights.
  • Eggs & Vinegar : An egg in vinegar might become bouncy.
  • Solar Panels & Sunlight : Solar panels will generate more power on sunny days.
  • Volcanoes & Eruptions : Mixing baking soda and vinegar will make a mini eruption.
  • Mirrors & Reflection : Shiny surfaces can reflect light better than dull ones.
  • Battery & Energy : Fresh batteries will make a toy run faster.
  • Density & Floating : Objects with lower density will float in water.
  • Shadows & Light Source : Moving the light source will change the shadow’s direction.
  • Freezing & States : Water turns solid when kept in the freezer.

Hypothesis Statement Examples for Science Experiments

Experiments let kids test out their predictions in real-time. Here are hypotheses crafted for various scientific tests.

  • Salt & Boiling Point : Adding salt will make water boil at a higher temperature.
  • Plants & Music : Playing music might affect a plant’s growth rate.
  • Rust & Moisture : Metals kept in a moist environment will rust faster.
  • Candles & Oxygen : A candle will burn out faster in an enclosed jar.
  • Fruits & Browning : Lemon juice can prevent cut fruits from browning.
  • Yeast & Sugar : Adding sugar will make yeast activate more vigorously.
  • Density & Layers : Different liquids will form layers based on their density.
  • Acids & Bases : Red cabbage juice will change color in acids and bases.
  • Soil Types & Water : Sandy soil will drain water faster than clay.
  • Thermometers & Temperatures : Thermometers will show higher readings in the sun.

Hypothesis Statement Examples for Kids At Home

These hypotheses are crafted for experiments and observations kids can easily make at home, using everyday items.

  • Chores & Time : Setting a timer will make me finish my chores faster.
  • Pets & Behavior : My cat sleeps more during the day than at night.
  • Recycling & Environment : Recycling more can reduce the trash in my home.
  • Cooking & Tastes : Adding spices will change the taste of my food.
  • Family Time & Bonding : Playing board games strengthens our family bond.
  • Cleaning & Organization : Organizing my toys daily will keep my room tidier.
  • Watering & Plant Health : Watering my plant regularly will keep its leaves green.
  • Decor & Mood : Changing the room decor can influence my mood.
  • Journals & Memories : Writing in my journal daily will help me remember fun events.
  • Photos & Growth : Taking monthly photos will show how much I’ve grown.

How do you write a hypothesis for kids? – A Step by Step Guide

Step 1: Start with Curiosity Begin with a question that your child is curious about. This could be something simple, like “Why is the sky blue?” or “Do plants need sunlight to grow?”

Step 2: Observe and Research Before formulating the hypothesis, encourage your child to observe the world around them. If possible, read or watch videos about the topic to gather information. The idea is to get a general understanding of the subject.

Step 3: Keep it Simple For kids, it’s essential to keep the hypothesis straightforward and concise. Use language that is easy to understand and relatable to their age.

Step 4: Make a Predictable Statement Help your child frame their hypothesis as an “If… then…” statement. For example, “If I water a plant every day, then it will grow taller.”

Step 5: Ensure Testability Ensure that the hypothesis can be tested using simple experiments or observations. It should be something they can prove or disprove through hands-on activities.

Step 6: Avoid Certainty Teach kids that a hypothesis is not a definitive statement of fact but rather a best guess based on what they know. It’s okay if the hypothesis turns out to be wrong; the learning process is more important.

Step 7: Review and Refine After forming the initial hypothesis, review it with your child. Discuss if it can be made simpler or clearer. Refinement aids in better understanding and testing.

Step 8: Test the Hypothesis This is the fun part! Plan an experiment or set of observations to test the hypothesis. Whether the hypothesis is proven correct or not, the experience provides a learning opportunity.

Tips for Writing Hypothesis for Kids

  • Encourage Curiosity : Always encourage your child to ask questions about the world around them. It’s the first step to formulating a hypothesis.
  • Use Familiar Language : Use words that the child understands and can relate to. Avoid jargon or technical terms.
  • Make it Fun : Turn the process of forming a hypothesis into a game or a storytelling session. This will keep kids engaged.
  • Use Visual Aids : Kids often respond well to visuals. Drawing or using props can help in understanding and formulating the hypothesis.
  • Stay Open-minded : It’s essential to teach kids that it’s okay if their hypothesis is wrong. The process of discovery and learning is what’s crucial.
  • Practice Regularly : The more often kids practice forming hypotheses, the better they get at it. Use everyday situations as opportunities.
  • Link to Real-life Scenarios : Relate the hypothesis to real-life situations or personal experiences. For instance, if discussing plants, you can relate it to a plant you have at home.
  • Collaborate : Sometimes, two heads are better than one. Encourage group activities where kids can discuss and come up with hypotheses together.
  • Encourage Documentation : Keeping a journal or notebook where they document their hypotheses and results can be a great learning tool.
  • Celebrate Efforts : Regardless of whether the hypothesis was correct, celebrate the effort and the learning journey. This reinforces the idea that the process is more important than the outcome.

Twitter

Text prompt

  • Instructive
  • Professional

10 Examples of Public speaking

20 Examples of Gas lighting

What is a Hypothesis? - Simple Explanation for Kids

Learn about what a hypothesis is with this easy-to-understand explanation tailored for children. Discover how scientists make guesses to understand the world better.

Alright kiddo, imagine we are detectives, and we want to solve a mystery about the world around us. A hypothesis is like a special guess that detectives (or in this case, scientists) make to find out why something happens.

Let's say you wonder why plants grow. You might guess, 'I think plants grow because they get water.' That's your hypothesis! It's your best idea right now for why plants grow.

But hold on! Having a hypothesis isn't the end. We need to test it to see if it's true. So, you could water some plants and see if they grow. If they do, your guess was right. If they don't, you need a new hypothesis.

A hypothesis isn't always right, and that's okay! It's like trying different keys to open a treasure chest. Sometimes it takes a few tries to find the right one, and each try teaches you something new.

So, a hypothesis is a smart guess we make to help solve a mystery about our world by testing it out. And guess what? Even grown-up scientists do this, just like you. Cool, right?

Latest Explanations

  • Understanding Writing Worksheets for 6-Year-Olds
  • How to Ask for a Writing Worksheet - A Simple Guide for 6-Year-Olds
  • Understanding Basic Multiplication for 6-Year-Olds: Counting Stickers
  • Understanding How Dinosaurs Lived on Earth Long Ago (For 5-Year-Olds)
  • Dinosaurs Lived on Earth Long Ago: A Fun Explanation for 5-Year-Olds
  • Understanding How Snow Helped a Brain Injury in a Plane Crash Survivor - For 11-Year-Olds
  • What is an IT Engineer? A Simple Guide for 4-Year-Olds
  • Understanding IT Engineers for Kids (Ages 6 and Up)
  • Understanding IT Engineer: A Simple Guide for 8-Year-Olds
  • Understanding What a Doctor Is for 8-Year-Olds

Upgrade Your Account

All paid plans include:, unlimited access to all tools.

Full use of Subject Explorer, Lesson Planner, Worksheets and more

Visual Understanding

Upload and analyze photos with advanced AI capabilities

Upgraded Intelligence

Get smarter, more relevant analysis for better insights

  • 3 Subject Explorer analyses per month (non-logged in)
  • 5 Subject Explorer analyses per month (with free account)
  • Access to basic features
  • Manage 1 Student (1 Primary)
  • Analysis based on student age
  • Unlimited access to all 10 Learning Corner tools
  • Add & Manage 2 Students (1 Primary + 1 Additional)
  • Add & Manage up to 5 Student Profiles (1 Primary + 4 Additional)
  • Priority support
  • Add & Manage up to 10 Student Profiles (1 Primary + 9 Additional)

Note: Your primary account is your first student profile. You can update your profile from the "My Account" dropdown in the main menu.

Educational institutions and large organizations: Email [email protected] for tailored pricing.

Got a feature request or is something not working? Let us know here or comment on Facebook .

  • Español NEW

Hypothesis facts for kids

Cellarius Harmonia Macrocosmica - Hypothesis Ptolemaica

A hypothesis is a proposed explanation for some event or problem.

Cardinal Bellarmine gave a well known example of the older sense of the word in his warning to Galileo in the early 17th century: that he must not treat the motion of the Earth as a reality, but merely as a hypothesis.

Today, a hypothesis refers to an idea that needs to be tested . A hypothesis needs more work by the researcher in order to check it. A tested hypothesis that works, may become part of a theory or become a theory itself. The testing should be an attempt to prove the hypothesis is wrong. That is, there should be a way to falsify the hypothesis, at least in principle.

People often call a hypothesis an "educated guess".

Experimenters may test and reject several hypotheses before solving the problem.

A 'working hypothesis' is just a rough kind of hypothesis that is provisionally accepted as a basis for further research. The hope is that a theory will be produced, even if the hypothesis ultimately fails.

Hypotheses are especially important in science. Several philosophers have said that without hypotheses there could be no science. In recent years, philosophers of science have tried to integrate the various approaches to testing hypotheses, and the scientific method in general, to form a more complete system. The point is that hypotheses are suggested ideas which are then tested by experiments or observations .

In statistics , people talk about correlation : correlation is how closely related two events or phenomena are. A proposition (or hypothesis) that two events are related cannot be tested in the same way as a law of nature is tested. An example would be to see if some drug is effective to treat a given medical condition. Even if there is a strong correlation that indicates that this is the case, some samples would still not fit the hypothesis.

There are two hypotheses in statistical tests, called the null hypothesis and the alternative hypothesis. The null hypothesis states that there is no link between the phenomena. The alternative hypothesis states that there is some kind of link. The alternative hypothesis may take several forms. It can be two-sided (for example: there is some effect, in a yet unknown direction) or one-sided (the direction of the supposed relation, positive or negative, is fixed in advance).

Related pages

  • Falsifiability
  • Thought experiment
  • This page was last modified on 16 October 2023, at 16:53. Suggest an edit .
-->
 

Every time you read about doing an experiment or starting a science fair project, it always says you need a hypothesis.  How do you write a hypothesis?  What is it?  How do you come up with a good hypothesis?

 

 

 

of Your Favorite Company!

What is a hypothesis?

No.  A hypothesis is sometimes described as an educated guess.  That's not the same thing as a guess and not really a good description of a hypothesis either.  Let's try working through an example.

If you put an ice cube on a plate and place it on the table, what will happen?  A very young child might guess that it will still be there in a couple of hours.  Most people would agree with the hypothesis that:

An ice cube will melt in less than 30 minutes.

You could put sit and watch the ice cube melt and think you've proved a hypothesis.  But you will have missed some important steps.

For a good science fair project you need to do quite a bit of research before any experimenting.  Start by finding some information about how and why water melts.  You could read a book, do a bit of Google searching, or even ask an expert.  For our example, you could learn about how temperature and air pressure can change the state of water.  Don't forget that elevation above sea level changes air pressure too.

Now, using all your research, try to restate that hypothesis.

An ice cube will melt in less than 30 minutes in a room at sea level with a temperature of 20C or 68F.

But wait a minute.  What is the ice made from?  What if the ice cube was made from salt water, or you sprinkled salt on a regular ice cube?  Time for some more research.  Would adding salt make a difference?  Turns out it does.  Would other chemicals change the melting time?

Using this new information, let's try that hypothesis again.

An ice cube made with tap water will melt in less than 30 minutes in a room at sea level with a temperature of 20C or 68F.

Does that seem like an educated guess?  No, it sounds like you are stating the obvious.

At this point, it is obvious only because of your research.  You haven't actually done the experiment.  Now it's time to run the experiment to support the hypothesis.

A hypothesis isn't an educated guess.  It is a tentative explanation for an observation, phenomenon, or scientific problem that can be tested by further investigation.

Once you do the experiment and find out if it supports the hypothesis, it becomes part of scientific theory.

Notes to Parents:

  • Every parent must use their own judgment in choosing which activities are safe for their own children.  While Science Kids at Home makes every effort to provide activity ideas that are safe and fun for children it is your responsibility to choose the activities that are safe in your own home.
  • Science Kids at Home has checked the external web links on this page that we created.  We believe these links provide interesting information that is appropriate for kids.  However, the internet is a constantly changing place and these links may not work or the external web site may have changed.  We also have no control over the "Ads by Google" links, but these should be related to kids science and crafts.  You are responsible for supervising your own children.  If you ever find a link that you feel is inappropriate, please let us know.

Kids Science Gifts   Science Experiments   Science Fair Projects   Science Topics   Creative Kids Blog

Kids Crafts   Privacy Policy   Copyright © 2016 Science Kids at Home, all rights reserved.

Get Your ALL ACCESS Shop Pass here →

Little bins for little hands logo

Scientific Method For Kids With Examples

Kids have questions about the world around them every day, and there is so much to learn through experimentation with simple materials. You can begin using the scientific method with elementary kids. Below we’ll share with you how and when to introduce the scientific method, the steps of the scientific method, and some easy scientific method experiments. There are so many great ways to enjoy science projects with kids!

how to use the scientific method with kids

What Is The Scientific Method?

The scientific method is a process or method of research. A problem is identified, information about the problem is gathered, a hypothesis or question is formulated from the information, and the hypothesis is put to the test with an experiment to prove or disprove its validity.

Sounds heavy… What in the world does that mean?!? It means you don’t need to try and solve the world’s biggest science questions! The scientific method is all about studying and learning things right around you.

As children develop practices that involve creating, gathering data evaluating, analyzing, and communicating, they can apply these critical thinking skills to any situation.

Note: The use of the best Science and Engineering Practices is also relevant to the topic of using the scientific method. Read more here and see if it fits your science planning needs.

Can Young Kids Use the Scientific Method?

Kids are great scientists at any age, and can use the scientific method in context to what they are learning. It can be adapted for any age!

The scientific method is a valuable tool for introducing kids to a logical way to solve scientific problems. Scientists use the scientific method to study, learn, and come up with an answer!

The scientific method is a process that helps double-check that answers are correct and the correct results are obtained through careful planning. Sometimes the guesses and questions change as you run your experiments.

Kids can use the scientific method too on questions that are relevant to them!

Let’s break the scientific method for kids down into six parts, and you can quickly see how each can be incorporated into your next science experiment.

What Are The Steps In The Scientific Method?

  • Make initial observations.
  • Come up with a question of interest that is based on the observations.
  • Develop a hypothesis or prediction to go along with the question.
  • Experiment and test.
  • Gather and record results of tests and experiments and draw conclusions.
  • Share and discuss results.

Whoa… Wait A  Minute! That sounds like a lot for a young kid!

You are correct. Depending on your kid’s abilities, following all the scientific method steps precisely will not go well. Someone will get frustrated, bored, and turned off by just how cool science can be. We do not want that to happen!

Using The Scientific Method For Preschool and Kindergarten

Use the scientific method steps as a guideline in the back of your mind. You can cover most of the steps by talking with your kids about…

  • What do they think will happen?
  • What is happening ?
  • What happened compared to what they thought would happen ?

No writing is required! It’s also best to pick pretty straightforward ideas that aren’t overly involved or complicated to set up and test. Kids always have burning questions and “what ifs.”

See if you can tackle their next “what if” using the scientific method by listening carefully to their conversations. You can even have them keep a journal with their “what if” questions for your next science time.

Learn more about Science Activities For Preschoolers and Kindergarten Science Experiments .

Now on to how to apply the scientific method for elementary kiddos and beyond.

Scientific Method Steps In Action

Learn more about the steps of the scientific method below, which are great for science at home with your kids or in the classroom! We have also included some simple scientific method experiments for you to enjoy.

Ice Science Experiments are perfect for this! Try these 3 today !

what is hypothesis kid friendly definition

STEP 1: Make Observations

Tons of everyday activities would make for cool science experiments using the scientific method. Listen to what your kids talk about and see happening. My son noticed that ice melted pretty fast in his water.

Observation is simply noticing what’s happening through our senses or with tools like a magnifying glass. Observation is used to collect and record data, enabling scientists to construct and test hypotheses and theories.

Learn more about observations in science.

STEP 2: Come Up With A Question 

Your kids’ observations should lead to some sort of question. For my son and his ice observations, he came up with questions. Does ice melt faster in different liquids? His curiosity about what happens to the ice in liquids is a simple science experiment perfect for using the scientific method.

Next! Do some research and come up with ideas!

STEP 3: Develop A Prediction or Hypothesis

You have made your observations, you have your question, and now you need to make a prediction about what you think will happen.

A prediction is a guess at what might happen in an experiment based on observation or other information.

A hypothesis is not simply a guess! It’s a statement of what you believe will happen based on the information you have gathered.

My son hypothesizes that ice will melt faster in juice than in water.

STEP 4: Conduct An Experiment

We made a prediction that ice will melt faster in juice than it will in water, and now we have to test our hypothesis. We set up an experiment with a glass of juice, a glass of water, and an ice cube for each.

For the best experiments, only one thing should change! All the things that can be changed in a science experiment are called variables. There are three types of variables; independent, dependent, and controlled.

The independent variable is the one that is changed in the experiment and will affect the dependent variable. Here we will use different types of liquids to melt our ice cube in.

The dependent variable is the factor that is observed or measured in the experiment. This will be the melting of the ice cubes. Set up a stopwatch or set a time limit to observe the changes!

The controlled variable stays constant in the experiment. The liquids should be roughly the same temperature (as close as possible) for our ice melting experiment and measured to the same amount. So we left them out to come to room temperature. They could also be tested right out of the fridge!

You can find simple science experiments here with dependent and controlled variables.

STEP 5: Record Results and Draw Conclusions

Make sure to record what is happening as well as the results—note changes at specific time intervals or after one set time interval.

For example…

  • Record when each ice cube is completely melted.
  • Add drawings if you wish of the setup up and the end results.
  • Was your prediction accurate? If it was inaccurate, record why.
  • Write out a final conclusion to your experiment.

STEP 6: Communicate Your Results

This is the opportunity to talk about your hypothesis, experiment, results, and conclusion!

ALTERNATIVE IDEAS: Switch out an ice cube for a lollipop or change the liquids using vinegar and cooking oil.

Now you have gone through the steps of the scientific method, read on for more fun scientific method experiments to try!

Free printable scientific method worksheets!

what is hypothesis kid friendly definition

Fun Scientific Method Experiments

Sink or float experiment.

A Sink or Float experiment is great for practicing the steps of the scientific method with younger kids.

Grab this FREE printable sink or float experiment

what is hypothesis kid friendly definition

Here are a few of our favorite scientific method experiments, which are great for elementary-age kids . Of course, you can find tons more awesome and doable science projects for kids here!

Magic Milk Experiment

Start with demonstrating this delightful magic milk experiment. Then get kids to apply the steps of the scientific method by coming up with a question to investigate. What happens when you change the type of milk used?

what is hypothesis kid friendly definition

What Dissolves In Water

Investigate  what solids dissolve in water  and what do not. Here’s a super fun science experiment for kids that’s very easy to set up! Learn about solutions, solutes, and solvents through experimenting with water and common kitchen ingredients.

Apple Browning Experiment

Investigate how to keep apples from turning brown with this apple oxidation experiment . What can you add to cut apples to stop or slow the oxidation process?

what is hypothesis kid friendly definition

Freezing Water Experiment

Will it freeze? What happens to the freezing point of water when you add salt?

Viscosity Experiment

Learn about the viscosity of fluids with a simple  viscosity experiment . Grab some marbles and add them to different household liquids to find out which one will fall to the bottom first. 

Seed Germination Experiment

Set up a simple seed germination experiment .

what is hypothesis kid friendly definition

Catapult Experiment

Make a simple popsicle stick catapult and use one of our experiment ideas to investigate from rubber band tension to changes in launch angle and more. How far can you fling your objects? Take measurements and find out.

Floating Orange

Investigate whether an orange floats or sinks in water, and what happens if you use different types of oranges. Learn about buoyancy and density with a simple ingredient from the kitchen, an orange.

Bread Mold Experiment

Grow mold on bread for science, and investigate how factors such as moisture, temperature, and air affect mold growth. 

Eggshell Strength Experiment

Test how strong an egg is with this eggshell strength experiment . Grab some eggs, and find out how much weight an egg can support.

what is hypothesis kid friendly definition

Free Printable Science Fair Starter Guide

Are you looking to plan a science fair project, make a science fair board, or want an easy guide to set up science experiments?

Learn more about prepping for a science fair and grab this free printable science fair project pack here!

If you want a variety of science fair experiments with instructions, make sure to pick up a copy of our Science Project Pack in the shop.

what is hypothesis kid friendly definition

Bonus STEM Projects For Kids

STEM activities include science, technology, engineering, and mathematics. As well as our kids science experiments, we have lots of fun STEM activities for you to try. Check out these STEM ideas below…

  • Building Activities
  • Engineering Projects For Kids
  • What Is Engineering For Kids?
  • LEGO Engineering Projects
  • Coding Activities For Kids
  • STEM Worksheets
  • Top 10 STEM Challenges For Kids

Printable Science Projects Pack

If you’re looking to grab all of our printable science projects in one convenient place plus exclusive worksheets and bonuses like a STEAM Project pack, our Science Project Pack is what you need! Over 300+ Pages!

  • 90+ classic science activities  with journal pages, supply lists, set up and process, and science information.  NEW! Activity-specific observation pages!
  • Best science practices posters  and our original science method process folders for extra alternatives!
  • Be a Collector activities pack  introduces kids to the world of making collections through the eyes of a scientist. What will they collect first?
  • Know the Words Science vocabulary pack  includes flashcards, crosswords, and word searches that illuminate keywords in the experiments!
  • My science journal writing prompts  explore what it means to be a scientist!!
  • Bonus STEAM Project Pack:  Art meets science with doable projects!
  • Bonus Quick Grab Packs for Biology, Earth Science, Chemistry, and Physics

what is hypothesis kid friendly definition

19 Comments

A great post and sure to help extend children’s thinking! I would like to download the 6 steps but the blue download button doesn’t seem to be working for me.

Thank you! All fixed. You should be able to download now!

  • Pingback: Popsicle Stick Catapult Ideas for Kids STEM Activity
  • Pingback: Magical Dancing Corn Thanksgiving Science Experiment
  • Pingback: Shadow Science Physics Activity With Animal Puppets (FREE Printable)
  • Pingback: Books to inspire your young scientists! – Mom Read It
  • Pingback: Seed Jar Science Experiment for Spring STEM Activities with Kids
  • Pingback: Magic Milk Classic Science Experiment Kids Science
  • Pingback: Earth Day Science Activity and Homemade Liquid Density Lava Lamp
  • Pingback: Dissolving Candy Hearts Science Experiment for Valentine's Day
  • Pingback: Seashells With Vinegar Ocean Experiment | Little Bins for Little Hands
  • Pingback: DIY Snow Globe For Kids | Little Bins for Little Hands
  • Pingback: Science Project Ideas with Usable Tips From a Teacher!
  • Pingback: Drops Of Water On A Penny | Little Bins for Little Hands
  • Pingback: The BEST Very Simple Science Experiments for Kids to Try Anywhere

it is so great, thanks a lot.

This helped for a science project.Thanks so much.

Comments are closed.

what is hypothesis kid friendly definition

Subscribe to receive a free 5-Day STEM Challenge Guide

~ projects to try now ~.

what is hypothesis kid friendly definition

  • Ask a question
  • Gather information and observe (research)
  • Make a hypothesis (guess the answer)
  • Experiment and test your hypothesis
  • Analyze your test results
  • Modify your hypothesis, if necessary
  • Present a conclusion
  • Retest (often done by other scientists)

Back to Kids Science Page

Back to Kids Study Page

Back to Ducksters Kids Home Page




























































  • More from M-W
  • To save this word, you'll need to log in. Log In

Definition of hypothesis

Did you know.

The Difference Between Hypothesis and Theory

A hypothesis is an assumption, an idea that is proposed for the sake of argument so that it can be tested to see if it might be true.

In the scientific method, the hypothesis is constructed before any applicable research has been done, apart from a basic background review. You ask a question, read up on what has been studied before, and then form a hypothesis.

A hypothesis is usually tentative; it's an assumption or suggestion made strictly for the objective of being tested.

A theory , in contrast, is a principle that has been formed as an attempt to explain things that have already been substantiated by data. It is used in the names of a number of principles accepted in the scientific community, such as the Big Bang Theory . Because of the rigors of experimentation and control, it is understood to be more likely to be true than a hypothesis is.

In non-scientific use, however, hypothesis and theory are often used interchangeably to mean simply an idea, speculation, or hunch, with theory being the more common choice.

Since this casual use does away with the distinctions upheld by the scientific community, hypothesis and theory are prone to being wrongly interpreted even when they are encountered in scientific contexts—or at least, contexts that allude to scientific study without making the critical distinction that scientists employ when weighing hypotheses and theories.

The most common occurrence is when theory is interpreted—and sometimes even gleefully seized upon—to mean something having less truth value than other scientific principles. (The word law applies to principles so firmly established that they are almost never questioned, such as the law of gravity.)

This mistake is one of projection: since we use theory in general to mean something lightly speculated, then it's implied that scientists must be talking about the same level of uncertainty when they use theory to refer to their well-tested and reasoned principles.

The distinction has come to the forefront particularly on occasions when the content of science curricula in schools has been challenged—notably, when a school board in Georgia put stickers on textbooks stating that evolution was "a theory, not a fact, regarding the origin of living things." As Kenneth R. Miller, a cell biologist at Brown University, has said , a theory "doesn’t mean a hunch or a guess. A theory is a system of explanations that ties together a whole bunch of facts. It not only explains those facts, but predicts what you ought to find from other observations and experiments.”

While theories are never completely infallible, they form the basis of scientific reasoning because, as Miller said "to the best of our ability, we’ve tested them, and they’ve held up."

  • proposition
  • supposition

hypothesis , theory , law mean a formula derived by inference from scientific data that explains a principle operating in nature.

hypothesis implies insufficient evidence to provide more than a tentative explanation.

theory implies a greater range of evidence and greater likelihood of truth.

law implies a statement of order and relation in nature that has been found to be invariable under the same conditions.

Examples of hypothesis in a Sentence

These examples are programmatically compiled from various online sources to illustrate current usage of the word 'hypothesis.' Any opinions expressed in the examples do not represent those of Merriam-Webster or its editors. Send us feedback about these examples.

Word History

Greek, from hypotithenai to put under, suppose, from hypo- + tithenai to put — more at do

1641, in the meaning defined at sense 1a

Phrases Containing hypothesis

  • counter - hypothesis
  • nebular hypothesis
  • null hypothesis
  • planetesimal hypothesis
  • Whorfian hypothesis

Articles Related to hypothesis

hypothesis

This is the Difference Between a...

This is the Difference Between a Hypothesis and a Theory

In scientific reasoning, they're two completely different things

Dictionary Entries Near hypothesis

hypothermia

hypothesize

Cite this Entry

“Hypothesis.” Merriam-Webster.com Dictionary , Merriam-Webster, https://www.merriam-webster.com/dictionary/hypothesis. Accessed 6 Sep. 2024.

Kids Definition

Kids definition of hypothesis, medical definition, medical definition of hypothesis, more from merriam-webster on hypothesis.

Nglish: Translation of hypothesis for Spanish Speakers

Britannica English: Translation of hypothesis for Arabic Speakers

Britannica.com: Encyclopedia article about hypothesis

Subscribe to America's largest dictionary and get thousands more definitions and advanced search—ad free!

Play Quordle: Guess all four words in a limited number of tries.  Each of your guesses must be a real 5-letter word.

Can you solve 4 words at once?

Word of the day.

See Definitions and Examples »

Get Word of the Day daily email!

Popular in Grammar & Usage

Plural and possessive names: a guide, 31 useful rhetorical devices, more commonly misspelled words, why does english have so many silent letters, your vs. you're: how to use them correctly, popular in wordplay, 8 words for lesser-known musical instruments, it's a scorcher words for the summer heat, 7 shakespearean insults to make life more interesting, birds say the darndest things, 10 words from taylor swift songs (merriam's version), games & quizzes.

Play Blossom: Solve today's spelling word game by finding as many words as you can using just 7 letters. Longer words score more points.

A hypothesis is a proposed explanation for some event or problem. For a scientific hypothesis, the scientific method requires that one can test it. [1] [2]

  • 2 Statistics
  • 3 Hypothesis Media
  • 4 Related pages
  • 5 References
  • 6 Other websites

In the early 17th century, Cardinal Bellarmine gave a well known example of the older sense of the word in his warning to Galileo : that he must not treat the motion of the Earth as a reality, but merely as a hypothesis.

Today, a hypothesis refers to an idea that needs to be tested . A hypothesis needs more work by the researcher in order to check it. A tested hypothesis that works may become part of a theory —or become a theory itself. The testing should be an attempt to prove that the hypothesis is wrong. That is, there should be a way to falsify the hypothesis, at least in principle if not in practice.

People often call a hypothesis an "educated guess".

Experimenters may test and reject several hypotheses, before solving the problem or reaching a satisfactory theory.

A 'working hypothesis' is just a rough kind of hypothesis that is provisionally accepted as a basis for further research. [5] The hope is that a theory will be produced, even if the hypothesis ultimately fails. [6] [7]

Hypotheses are especially important in science. Several philosophers have said that without hypotheses, there could be no science. [8] In recent years, philosophers of science have tried to integrate the various approaches to testing hypotheses (and the scientific method in general), to form a more complete system. The point is that hypotheses are suggested ideas , which are then tested by experiments or observations .

In statistics , people talk about correlation : correlation is how closely related two events or phenomena are. A proposition (or hypothesis) that two events are related cannot be tested in the same way as a law of nature can be tested. An example would be to see if some drug is effective to treat a given medical condition. Even if there is a strong correlation that indicates that this is the case, some samples would still not fit the hypothesis.

There are two hypotheses in statistical tests, called the null hypothesis , often written as [math]\displaystyle{ H_0 }[/math] , and the alternative hypothesis , often written as [math]\displaystyle{ H_a }[/math] . [9] The null hypothesis states that there is no link between the phenomena, [10] and is usually assumed to be true until it can be proven wrong beyond a reasonable doubt. [11] The alternative hypothesis states that there is some kind of link. It is usually the opposite of the null hypothesis, and is what one would conclude if null hypothesis is rejected. [12] The alternative hypothesis may take several forms. It can be two-sided (for example: there is some effect, in a yet unknown direction) or one-sided (the direction of the supposed relation, positive or negative, is fixed in advance). [11]

Hypothesis Media

what is hypothesis kid friendly definition

The hypothesis of Andreas Cellarius , showing the planetary motions in eccentric and epicyclical orbits .

Related pages

  • Falsifiability
  • Gaia hypothesis
  • Null hypothesis
  • Occam's razor
  • Statistical hypothesis test
  • Thought experiment
  • ↑ The term comes from the Greek , hypotithenai meaning "to put under" or "to suppose".
  • ↑ Bunge, Mario 1967. Scientific research I: the search for system . Berlin: Springer Verlag, Chapter 5, p222.
  • ↑ Richard Feynman (1965) The character of physical law . p156
  • ↑ Oxford Dictionary of Sports Science & Medicine Eprint via Answers.com
  • ↑ See in "hypothesis", Century Dictionary Supplement , v. 1, 1909, New York: Century Company. Reprinted, v. 11, p. 616 (via Internet Archive ) of the Century Dictionary and Cyclopedia , 1911.
  • ↑ Schick, Theodore; Vaughn, Lewis (2002). How to think about weird things: critical thinking for a New Age . Boston: McGraw-Hill Higher Education. ISBN   0-7674-2048-9 .
  • ↑ Medawar P.B. & J.S. 1983. Aristotle to zoos: a philosophical dictionary of biology . Harvard University Press, p148. ISBN   0-674-04537-8
  • ↑ "List of Probability and Statistics Symbols" . Math Vault . 2020-04-26 . Retrieved 2020-09-22 .
  • ↑ or that the link does not have the form given by the alternative hypothesis
  • ↑ 11.0 11.1 "Null and Alternative Hypotheses | Introduction to Statistics" . courses.lumenlearning.com . Retrieved 2020-09-22 .
  • ↑ "Introductory Statistics: Null and Alternative Hypotheses" . opentextbc.ca . Archived from the original on June 11, 2021 . Retrieved September 22, 2020 .

Other websites

  has more on:
  • Research and evaluation glossary
  • Analysis and synthesis - on scientific method, based on a study by Bernhard Riemann from the Swedish Morphological Society

Literacy Ideas

HOW TO WRITE A HYPOTHESIS

' data-src=

Writing a hypothesis

Frequently, when we hear the word ‘hypothesis’, we immediately think of an investigation in the form of a science experiment. This is not surprising, as science is the subject area where we are usually first introduced to the term.

However, the term hypothesis also applies to investigations and research in many diverse areas and branches of learning, leaving us wondering how to write a hypothesis in statistics and how to write a hypothesis in sociology alongside how to write a hypothesis in a lab report.

We can find hypotheses at work in areas as wide-ranging as history, psychology, technology, engineering, literature, design, and economics. With such a vast array of uses, hypothesis writing is an essential skill for our students to develop.

What Is a Hypothesis?

how to write a hypothesis | Hypothesis definition | HOW TO WRITE A HYPOTHESIS | literacyideas.com

A hypothesis is a proposed or predicted answer to a question. The purpose of writing a hypothesis is to follow it up by testing that answer. This test can take the form of an investigation, experiment, or writing a research paper that will ideally prove or disprove the hypothesis’s prediction.

Despite this element of the unknown, a hypothesis is not the same thing as a guess. Though the hypothesis writer typically has some uncertainty, the creation of the hypothesis is generally based on some background knowledge and research of the topic. The writer believes in the likelihood of a specific outcome, but further investigation will be required to validate or falsify the claim made in their hypothesis.

In this regard, a hypothesis is more along the lines of an ‘educated guess’ that has been based on observation and/or background knowledge.

A hypothesis should:

  • Make a prediction
  • Provide reasons for that prediction
  • Specifies a relationship between two or more variables
  • Be testable
  • Be falsifiable
  • Be expressed simply and concisely
  • Serves as the starting point for an investigation, an experiment, or another form of testing

A COMPLETE TEACHING UNIT ON WRITING PROCEDURAL TEXTS

how to write a hypothesis | procedural text writing unit 1 | HOW TO WRITE A HYPOTHESIS | literacyideas.com

This HUGE BUNDLE  offers 97 PAGES of hands-on, printable, and digital media resources. Your students will be WRITING procedures with STRUCTURE, INSIGHT AND KNOWLEDGE like never before.

Hypothesis Examples for Students and Teachers

If students listen to classical music while studying, they will retain more information.

Mold growth is affected by the level of moisture in the air.

Students who sleep for longer at night retain more information at school.

Employees who work more than 40 hours per week show higher instances of clinical depression.

Time spent on social media is negatively correlated to the length of the average attention span.

People who spend time exercising regularly are less likely to develop a cardiovascular illness.

If people are shorter, then they are more likely to live longer.

What are Variables in a Hypothesis?

Variables are an essential aspect of any hypothesis. But what exactly do we mean by this term?

Variables are changeable factors or characteristics that may affect the outcome of an investigation. Things like age, weight, the height of participants, length of time, the difficulty of reading material, etc., could all be considered variables.

Usually, an investigation or experiment will focus on how different variables affect each other. So, it is vital to define the variables clearly if you are to measure the effect they have on each other accurately.

There are three main types of variables to consider in a hypothesis. These are:

  • Independent Variables
  • Dependent Variables

The Independent Variable

The independent variable is unaffected by any of the other variables in the hypothesis. We can think of the independent variable as the assumed cause .

The Dependent Variable

The dependent variable is affected by the other variables in the hypothesis. It is what is being tested or measured. We can think of the dependent variable as the assumed effect .

For example, let’s investigate the correlation between test scores across different age groups. The age groups will be the independent variable, and the test scores will be the dependent variable .

Now that we know what variables are let’s look at how they work in the various types of hypotheses.

Types of Hypotheses

There are many different types of hypotheses, and it is helpful to know the most common of these if the student selects the most suitable tool for their specific job.

The most frequently used types of hypotheses are:

The Simple Hypothesis

The complex hypothesis, the empirical hypothesis, the null hypothesis, the directional hypothesis, the non-directional hypothesis.

This straightforward hypothesis type predicts the relationship between an independent and dependent variable.

Example: Eating too much sugar causes weight gain.

This type of hypothesis is based on the relationship between multiple independent and/or dependent variables.

Example: Overeating sugar causes weight gain and poor cardiovascular health.

Also called a working hypothesis, an empirical hypothesis is tested through observation and experimentation. An empirical hypothesis is produced through investigation and trial and error. As a result, the empirical hypothesis may change its independent variables in the process.

Example: Exposure to sunlight helps lettuces grow faster.

This hypothesis states that there is no significant or meaningful relationship between specific variables.

Example: Exposure to sunlight does not affect the rate of a plant’s growth.

This type of hypothesis predicts the direction of an effect between variables, i.e., positive or negative.

Example: A high-quality education will result in a greater number of career opportunities.

Similar to the directional hypothesis, this type of hypothesis predicts the nature of the effect but not the direction that effect will go in.

Example: A high-quality education will affect the number of available career opportunities.

How to Write a Hypothesis : A STEP-BY-STEP GUIDE

  • Ask a Question

The starting point for any hypothesis is asking a question. This is often called the research question . The research question is the student’s jumping-off point to developing their hypothesis. This question should be specific and answerable. The hypothesis will be the point where the research question is transformed into a declarative statement.

Ideally, the questions the students develop should be relational, i.e., they should look at how two or more variables relate to each other as described above. For example, what effect does sunlight have on the growth rate of lettuce?

  • Research the Question

The research is an essential part of the process of developing a hypothesis. Students will need to examine the ideas and studies that are out there on the topic already. By examining the literature already out there on their topic, they can begin to refine their questions on the subject and begin to form predictions based on their studies.

Remember, a hypothesis can be defined as an ‘educated’ guess. This is the part of the process where the student educates themself on the subject before making their ‘guess.’

  • Define Your Variables

By now, your students should be ready to form their preliminary hypotheses. To do this, they should first focus on defining their independent and dependent variables. Now may be an excellent opportunity to remind students that the independent variables are the only variables that they have complete control over, while dependent variables are what is tested or measured.

  • Develop Your Preliminary Hypotheses

With variables defined, students can now work on a draft of their hypothesis. To do this, they can begin by examining their variables and the available data and then making a statement about the relationship between these variables. Students must brainstorm and reflect on what they expect to happen in their investigation before making a prediction upon which to base their hypothesis. It’s worth noting, too, that hypotheses are typically, though not exclusively, written in the present tense.

Students revisit the different types of hypotheses described earlier in this article. Students select three types of hypotheses and frame their preliminary hypotheses according to each criteria. Which works best? Which type is the least suitable for the student’s hypothesis?

  • Finalize the Phrasing

By now, students will have made a decision on which type of hypothesis suits their needs best, and it will now be time to finalize the wording of their hypotheses. There are various ways that students can choose to frame their hypothesis, but below, we will examine the three most common ways.

The If/Then Phrasing

This is the most common type of hypothesis and perhaps the easiest to write for students. It follows a simple ‘ If x, then y ’ formula that makes a prediction that forms the basis of a subsequent investigation.

If I eat more calories, then I will gain weight.

Correlation Phrasing

Another way to phrase a hypothesis is to focus on the correlation between the variables. This typically takes the form of a statement that defines that relationship positively or negatively.

The more calories that are eaten beyond the daily recommended requirements, the greater the weight gain will be.

Comparison Phrasing

This form of phrasing is applicable when comparing two groups and focuses on the differences that the investigation is expected to reveal between those two groups.

Those who eat more calories will gain more weight than those who eat fewer calories.

Questions to ask during this process include:

  • What tense is the hypothesis written in?
  • Does the hypothesis contain both independent and dependent variables?
  • Is the hypothesis framed using the if/then, correlation, or comparison framework (or other similar suitable structure)?
  • Is the hypothesis worded clearly and concisely?
  • Does the hypothesis make a prediction?
  • Is the prediction specific?
  • Is the hypothesis testable?
  • Gather Data to Support/Disprove Your Hypothesis

If the purpose of a hypothesis is to provide a reason to pursue an investigation, then the student will need to gather related information together to fuel that investigation.

While, by definition, a hypothesis leans towards a specific outcome, the student shouldn’t worry if their investigations or experiments ultimately disprove their hypothesis. The hypothesis is the starting point; the destination is not preordained. This is the very essence of the scientific method. Students should trust the results of their investigation to speak for themselves. Either way, the outcome is valuable information.

TOP 10 TIPS FOR WRITING A STRONG HYPOTHESIS

  • Begin by asking a clear and compelling question. Your hypothesis is a response to the inquiry you are eager to explore.
  • Keep it simple and straightforward. Avoid using complex phrases or making multiple predictions in one hypothesis.
  • Use the right format. A strong hypothesis is often written in the form of an “if-then” statement.
  • Ensure that your hypothesis is testable. Your hypothesis should be something that can be verified through experimentation or observation.
  • Stay objective. Your hypothesis should be based on facts and evidence, not personal opinions or prejudices.
  • Examine different possibilities. Don’t limit yourself to just one hypothesis. Consider alternative explanations for your observations.
  • Stay open to the possibility of being wrong. Your hypothesis is just a prediction, and it may not always be correct.
  • Search for evidence to support your hypothesis. Investigate existing literature and gather data that supports your hypothesis.
  • Make sure that your hypothesis is pertinent. Your hypothesis should be relevant to the question you are trying to investigate.
  • Revise your hypothesis as necessary. If new evidence arises that contradicts your hypothesis, you may need to adjust it accordingly.

HYPOTHESIS TEACHING STRATEGIES AND ACTIVITIES

When teaching young scientists and writers, it’s essential to remember that the process of formulating a hypothesis is not always straightforward. It’s easy to make mistakes along the way, but with a bit of guidance, you can ensure your students avoid some of the most common pitfalls like these.

  • Don’t let your students be too vague. Remind them that when formulating a hypothesis, it’s essential to be specific and avoid using overly general language. Make sure their hypothesis is clear and easy to understand.
  • Being swayed by personal biases will impact their hypothesis negatively. It’s important to stay objective when formulating a hypothesis, so avoid letting personal biases or opinions get in the way.
  • Not starting with a clear question is the number one stumbling block for students, so before forming a hypothesis, you need to reinforce the need for a clear understanding of the question they’re trying to answer. Start with a question that is specific and relevant.

Hypothesis Warmup Activity: First, organize students into small working groups of four or five. Then, set each group to collect a list of hypotheses. They can find these by searching on the Internet or finding examples in textbooks . When students have gathered together a suitable list of hypotheses, have them identify the independent and dependent variables in each case. They can underline each of these in different colors.

It may be helpful for students to examine each hypothesis to identify the ‘cause’ elements and the ‘effect’ elements. When students have finished, they can present their findings to the class.

Task 1: Set your students the task of coming up with an investigation-worthy question on a topic that interests them. This activity works particularly well for groups.

Task 2: Students search for existing information and theories on their topic on the Internet or in the library. They should take notes where necessary and begin to form an assumption or prediction based on their reading and research that they can investigate further.

Task 3: When working with a talking partner, can students identify which of their partner’s independent and dependent variables? If not, then one partner will need to revisit the definitions for the two types of variables as outlined earlier.

Task 4: Organize students into smaller groups and task them with presenting their hypotheses to each other. Students can then provide feedback before the final wording of each hypothesis is finalized.

Procedural Writing Unit

Perhaps due to their short length, learning how to create a well-written hypothesis is not typically afforded much time in the curriculum.

However, though they are brief in length, they are complex enough to warrant focused learning and practice in class, particularly given their importance across many curriculum areas.

Learning how to write a hypothesis works well as a standalone writing skill. It can also form part of a more comprehensive academic or scientific writing study that focuses on how to write a research question, develop a theory, etc.

As with any text type, practice improves performance. By following the processes outlined above, students will be well on their way to writing their own hypotheses competently in no time.

Logo for Pressbooks at Virginia Tech

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

5.5 Introduction to Hypothesis Tests

Dalmation puppy near man sitting on the floor.

One job of a statistician is to make statistical inferences about populations based on samples taken from the population. Confidence intervals are one way to estimate a population parameter.

Another way to make a statistical inference is to make a decision about a parameter. For instance, a car dealership advertises that its new small truck gets 35 miles per gallon on average. A tutoring service claims that its method of tutoring helps 90% of its students get an A or a B. A company says that female managers in their company earn an average of $60,000 per year. A statistician may want to make a decision about or evaluate these claims. A hypothesis test can be used to do this.

A hypothesis test involves collecting data from a sample and evaluating the data. Then the statistician makes a decision as to whether or not there is sufficient evidence to reject the null hypothesis based upon analyses of the data.

In this section, you will conduct hypothesis tests on single means when the population standard deviation is known.

Hypothesis testing consists of two contradictory hypotheses or statements, a decision based on the data, and a conclusion. To perform a hypothesis test, a statistician will perform some variation of these steps:

  • Define hypotheses.
  • Collect and/or use the sample data to determine the correct distribution to use.
  • Calculate test statistic.
  • Make a decision.
  • Write a conclusion.

Defining your hypotheses

The actual test begins by considering two hypotheses: the null hypothesis and the alternative hypothesis. These hypotheses contain opposing viewpoints.

The null hypothesis ( H 0 ) is often a statement of the accepted historical value or norm. This is your starting point that you must assume from the beginning in order to show an effect exists.

The alternative hypothesis ( H a ) is a claim about the population that is contradictory to H 0 and what we conclude when we reject H 0 .

Since the null and alternative hypotheses are contradictory, you must examine evidence to decide if you have enough evidence to reject the null hypothesis or not. The evidence is in the form of sample data.

After you have determined which hypothesis the sample supports, you make a decision . There are two options for a decision. They are “reject H 0 ” if the sample information favors the alternative hypothesis or “do not reject H 0 ” or “decline to reject H 0 ” if the sample information is insufficient to reject the null hypothesis.

The following table shows mathematical symbols used in H 0 and H a :

Figure 5.12: Null and alternative hypotheses
equal (=) not equal (≠) greater than (>) less than (<)
equal (=) less than (<)
equal (=) more than (>)

NOTE: H 0 always has a symbol with an equal in it. H a never has a symbol with an equal in it. The choice of symbol in the alternative hypothesis depends on the wording of the hypothesis test. Despite this, many researchers may use =, ≀, or ≄ in the null hypothesis. This practice is acceptable because our only decision is to reject or not reject the null hypothesis.

We want to test whether the mean GPA of students in American colleges is 2.0 (out of 4.0). The null hypothesis is: H 0 : Ό = 2.0. What is the alternative hypothesis?

A medical trial is conducted to test whether or not a new medicine reduces cholesterol by 25%. State the null and alternative hypotheses.

Using the Sample to Test the Null Hypothesis

Once you have defined your hypotheses, the next step in the process is to collect sample data. In a classroom context, the data or summary statistics will usually be given to you.

Then you will have to determine the correct distribution to perform the hypothesis test, given the assumptions you are able to make about the situation. Right now, we are demonstrating these ideas in a test for a mean when the population standard deviation is known using the z distribution. We will see other scenarios in the future.

Calculating a Test Statistic

Next you will start evaluating the data. This begins with calculating your test statistic , which is a measure of the distance between what you observed and what you are assuming to be true. In this context, your test statistic, z ο , quantifies the number of standard deviations between the sample mean, x, and the population mean, ” . Calculating the test statistic is analogous to the previously discussed process of standardizing observations with z -scores:

z=\frac{\overline{x}-{\mu }_{o}}{\left(\frac{\sigma }{\sqrt{n}}\right)}

where ” o   is the value assumed to be true in the null hypothesis.

Making a Decision

Once you have your test statistic, there are two methods to use it to make your decision:

  • Critical value method (discussed further in later chapters)
  • p -value method (our current focus)

p -Value Method

To find a p -value , we use the test statistic to calculate the actual probability of getting the test result. Formally, the p -value is the probability that, if the null hypothesis is true, the results from another randomly selected sample will be as extreme or more extreme as the results obtained from the given sample.

A large p -value calculated from the data indicates that we should not reject the null hypothesis. The smaller the p -value, the more unlikely the outcome and the stronger the evidence is against the null hypothesis. We would reject the null hypothesis if the evidence is strongly against it.

Draw a graph that shows the p -value. The hypothesis test is easier to perform if you use a graph because you see the problem more clearly.

Suppose a baker claims that his bread height is more than 15 cm on average. Several of his customers do not believe him. To persuade his customers that he is right, the baker decides to do a hypothesis test. He bakes ten loaves of bread. The mean height of the sample loaves is 17 cm. The baker knows from baking hundreds of loaves of bread that the standard deviation for the height is 0.5 cm and the distribution of heights is normal.

The null hypothesis could be H 0 : ÎŒ ≀ 15.

The alternate hypothesis is H a : Ό > 15.

The words “is more than” calls for the use of the > symbol, so “ ÎŒ > 15″ goes into the alternate hypothesis. The null hypothesis must contradict the alternate hypothesis.

\frac{\sigma }{\sqrt{n}}

Suppose the null hypothesis is true (the mean height of the loaves is no more than 15 cm). Then, is the mean height (17 cm) calculated from the sample unexpectedly large? The hypothesis test works by asking how unlikely the sample mean would be if the null hypothesis were true. The graph shows how far out the sample mean is on the normal curve. The p -value is the probability that, if we were to take other samples, any other sample mean would fall at least as far out as 17 cm.

This means that the p -value is the probability that a sample mean is the same or greater than 17 cm when the population mean is, in fact, 15 cm. We can calculate this probability using the normal distribution for means.

Normal distribution curve on average bread heights with values 15, as the population mean, and 17, as the point to determine the p-value, on the x-axis.

A p -value of approximately zero tells us that it is highly unlikely that a loaf of bread rises no more than 15 cm on average. That is, almost 0% of all loaves of bread would be at least as high as 17 cm purely by CHANCE had the population mean height really been 15 cm. Because the outcome of 17 cm is so unlikely (meaning it is happening NOT by chance alone), we conclude that the evidence is strongly against the null hypothesis that the mean height would be at most 15 cm. There is sufficient evidence that the true mean height for the population of the baker’s loaves of bread is greater than 15 cm.

A normal distribution has a standard deviation of one. We want to verify a claim that the mean is greater than 12. A sample of 36 is taken with a sample mean of 12.5.

Find the p -value.

Decision and Conclusion

A systematic way to decide whether to reject or not reject the null hypothesis is to compare the p -value and a preset or preconceived α (also called a significance level ). A preset α is the probability of a type I error (rejecting the null hypothesis when the null hypothesis is true). It may or may not be given to you at the beginning of the problem. If there is no given preconceived α , then use α = 0.05.

When you make a decision to reject or not reject H 0 , do as follows:

  • If α > p -value, reject H 0 . The results of the sample data are statistically significant . You can say there is sufficient evidence to conclude that H 0 is an incorrect belief and that the alternative hypothesis, H a , may be correct.
  • If α ≀ p -value, fail to reject H 0 . The results of the sample data are not significant. There is not sufficient evidence to conclude that the alternative hypothesis, H a , may be correct.

After you make your decision, write a thoughtful conclusion in the context of the scenario incorporating the hypotheses.

NOTE: When you “do not reject H 0 ,” it does not mean that you should believe that H 0 is true. It simply means that the sample data have failed to provide sufficient evidence to cast serious doubt about the truthfulness of H o .

When using the p -value to evaluate a hypothesis test, the following rhymes can come in handy:

If the p -value is low, the null must go.

If the p -value is high, the null must fly.

This memory aid relates a p -value less than the established alpha (“the p -value is low”) as rejecting the null hypothesis and, likewise, relates a p -value higher than the established alpha (“the p -value is high”) as not rejecting the null hypothesis.

Fill in the blanks:

  • Reject the null hypothesis when              .
  • The results of the sample data             .
  • Do not reject the null when hypothesis when             .

It’s a Boy Genetics Labs claim their procedures improve the chances of a boy being born. The results for a test of a single population proportion are as follows:

  • H 0 : p = 0.50, H a : p > 0.50
  • p -value = 0.025

Interpret the results and state a conclusion in simple, non-technical terms.

Click here for more multimedia resources, including podcasts, videos, lecture notes, and worked examples.

Figure References

Figure 5.11: Alora Griffiths (2019). dalmatian puppy near man in blue shorts kneeling. Unsplash license. https://unsplash.com/photos/7aRQZtLsvqw

Figure 5.13: Kindred Grey (2020). Bread height probability. CC BY-SA 4.0.

A decision-making procedure for determining whether sample evidence supports a hypothesis

The claim that is assumed to be true and is tested in a hypothesis test

A working hypothesis that is contradictory to the null hypothesis

A measure of the difference between observations and the hypothesized (or claimed) value

The probability that an event will occur, assuming the null hypothesis is true

Probability that a true null hypothesis will be rejected, also known as type I error and denoted by α

Finding sufficient evidence that the observed effect is not just due to variability, often from rejecting the null hypothesis

Significant Statistics Copyright © 2024 by John Morgan Russell, OpenStaxCollege, OpenIntro is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

|
| | | | | |
My Wordlists
Legacy activities
Advanced Dictionary  
 
 
  Wordsmyth
 
 
Lookup History
 
foreshadows, foreshadowing, foreshadowed
to signal or indicate beforehand; presage; prefigure. , ,
, ,
foreshadower (n.)
 
Subscribe for ad-free
Wordsmyth and more

IMAGES

  1. What is a hypothesis kid definition?

    what is hypothesis kid friendly definition

  2. What is Hypothesis? Functions- Characteristics-types-Criteria

    what is hypothesis kid friendly definition

  3. Hypothesis

    what is hypothesis kid friendly definition

  4. Scientific Method Process Printable Posters Cute Clip Art of Students

    what is hypothesis kid friendly definition

  5. Hypothesis

    what is hypothesis kid friendly definition

  6. Hypothesis Testing Lesson for Kids: Examples & Definition

    what is hypothesis kid friendly definition

VIDEO

  1. Concept of Hypothesis

  2. How Did the Moon Form 🔮 The Giant Impact Theory Explained 🌕

  3. What does hypothesis mean?

  4. Hypothesis Development

  5. What is Hypothesis || Meaning and Definition of Hypothesis ||

  6. The Introduction of Riemann Hypothesis, Solutions for All Integers

COMMENTS

  1. hypothesis

    The meaning of hypothesis. Definition of hypothesis. Best online English dictionaries for children, with kid-friendly definitions, integrated thesaurus for kids, images, and animations. Spanish and Chinese language support available

  2. Hypothesis Lesson for Kids: Definition & Examples

    Problem 1. a) There is a positive relationship between the length of a pendulum and the period of the pendulum. This is a prediction that can be tested by various experiments. Problem 2. c) Diets ...

  3. What is a hypothesis kid definition?

    Unlocking Curiosity: Discovering the Power of Hypotheses with Our Kid-Friendly Definition! 🚀🔍 Dive into the world of science with our exciting video! Join...

  4. Hypothesis For Kids

    Phrasing hypothesis in simple words makes it relatable and easier for kids to grasp. Here are examples with kid-friendly language. Socks & Warmth: Wearing socks will keep my toes toasty. Jumping & Energy: The more I jump, the more energy I feel. Sandcastles & Water: A little water makes my sandcastle stand tall.

  5. What is a Hypothesis?

    A hypothesis is like a special guess that detectives (or in this case, scientists) make to find out why something happens. Let's say you wonder why plants grow. You might guess, 'I think plants grow because they get water.'. That's your hypothesis! It's your best idea right now for why plants grow. But hold on! Having a hypothesis isn't the end.

  6. Hypothesis facts for kids

    Today, a hypothesis refers to an idea that needs to be tested. A hypothesis needs more work by the researcher in order to check it. A tested hypothesis that works, may become part of a theory or become a theory itself. The testing should be an attempt to prove the hypothesis is wrong. That is, there should be a way to falsify the hypothesis, at ...

  7. How to Write a Hypothesis: Lesson for Kids

    Follow this easy formula to write a strong hypothesis: If (I do this), then (this will happen). We call this an if - then statement. Here are some examples of an if - then statement: If I use ...

  8. science fair project

    An ice cube will melt in less than 30 minutes. You could put sit and watch the ice cube melt and think you've proved a hypothesis. But you will have missed some important steps. For a good science fair project you need to do quite a bit of research before any experimenting. Start by finding some information about how and why water melts.

  9. Scientific Method For Kids With Examples

    STEP 3: Develop A Prediction or Hypothesis. You have made your observations, you have your question, and now you need to make a prediction about what you think will happen. A prediction is a guess at what might happen in an experiment based on observation or other information. A hypothesis is not simply a guess!

  10. Hypothesis Lesson for Kids: Definition & Examples

    Short Summary. Before you do your next science experiment, remember to make a hypothesis first. Think about everything you know about the items in your experiment, then make an educated guess ...

  11. hypothesis

    hypothesis: a prediction or educated guess that can be tested and can be used to guide further study. hypothesize: to form a hypothesis; make an informed guess; theorize.

  12. What is an example hypothesis for kids?

    Unlock the secrets of science with this fun and educational video! Join us as we explore an example hypothesis for kids - 'If I water my plants every day, th...

  13. Kids science: Learn about the Scientific Method

    Scientific Method Steps. As described above, there are specific steps that should be taken when using the scientific method. Here is an example of the steps: Ask a question. Gather information and observe (research) Make a hypothesis (guess the answer) Experiment and test your hypothesis. Analyze your test results.

  14. Hypothesis Definition & Meaning

    The meaning of HYPOTHESIS is an assumption or concession made for the sake of argument. How to use hypothesis in a sentence. The Difference Between Hypothesis and Theory Synonym Discussion of Hypothesis.

  15. Science A-Z Hypotheses Grades 3-4 Process Science Unit

    Each level of the book conveys similar concepts, images, and vocabulary. Hypotheses. Hypotheses are statements that predict an outcome and provide a potential explanation for an experiment, based on prior knowledge. By using the resources below, students will learn about this important science skill and practice making good hypotheses.

  16. Hypothesis Facts for Kids

    Today, a hypothesis refers to an idea that needs to be tested. A hypothesis needs more work by the researcher in order to check it. A tested hypothesis that works may become part of a theory —or become a theory itself. The testing should be an attempt to prove that the hypothesis is wrong. That is, there should be a way to falsify the ...

  17. How to Write a Hypothesis: Lesson for Kids

    A hypothesis is a type of educated guess or prediction about a scientific phenomenon, which is a vital part of the scientific method. ... Scientific Inquiry Lesson for Kids: Process & Definition ...

  18. hypothetical

    Definition of hypothetical. Best online English dictionaries for children, with kid-friendly definitions, integrated thesaurus for kids, images, and animations. ... of, pertaining to, or characterized by a hypothesis. a hypothetical construction of thought synonyms: theoretical similar words: academic, speculative:

  19. How to Write a Hypothesis in 5 Easy Steps:

    How to Write a Hypothesis: A STEP-BY-STEP GUIDE. Ask a Question. The starting point for any hypothesis is asking a question. This is often called the research question. The research question is the student's jumping-off point to developing their hypothesis. This question should be specific and answerable.

  20. Hypothesis Testing Lesson for Kids: Examples & Definition

    Hypothesis Testing Lesson for Kids: Examples & Definition. Tammie has taught elementary school for 14 yrs. and holds an MA in Instructional Technology. Scientists spend a lot of time seeking ...

  21. purpose

    The meaning of purpose. Definition of purpose. Best online English dictionaries for children, with kid-friendly definitions, integrated thesaurus for kids, images, and animations. Spanish and Chinese language support available

  22. 5.5 Introduction to Hypothesis Tests

    When using the p-value to evaluate a hypothesis test, the following rhymes can come in handy:. If the p-value is low, the null must go.. If the p-value is high, the null must fly.. This memory aid relates a p-value less than the established alpha ("the p-value is low") as rejecting the null hypothesis and, likewise, relates a p-value higher than the established alpha ("the p-value is ...

  23. What is a Hypothesis?

    The quiz will help you practice the following skills: Defining key concepts - be able to accurately define the term hypothesis. Knowledge application - use what you know about science experiments ...

  24. foreshadow

    The meaning of foreshadow. Definition of foreshadow. Best online English dictionaries for children, with kid-friendly definitions, integrated thesaurus for kids, images, and animations. Spanish and Chinese language support available